首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudomonas putida F1 contains a multicomponent enzyme system, toluene dioxygenase, that converts toluene and a variety of substituted benzenes to cis-dihydrodiols by the addition of one molecule of molecular oxygen. Toluene-grown cells of P. putida F1 also catalyze the monohydroxylation of phenols to the corresponding catechols by an unknown mechanism. Respirometric studies with washed cells revealed similar enzyme induction patterns in cells grown on toluene or phenol. Induction of toluene dioxygenase and subsequent enzymes for catechol oxidation allowed growth on phenol. Tests with specific mutants of P. putida F1 indicated that the ability to hydroxylate phenols was only expressed in cells that contained an active toluene dioxygenase enzyme system. 18O2 experiments indicated that the overall reaction involved the incorporation of only one atom of oxygen in the catechol, which suggests either a monooxygenase mechanism or a dioxygenase reaction with subsequent specific elimination of water.  相似文献   

2.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

3.
Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that the monooxygen insertion is mediated by an active-site process. Experiments with 3-[2H]indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases.  相似文献   

4.
Toluene dioxygenase (Tod) enzyme activity can be measured by the conversion of indole to indigo. Indigo is measured spectrophotometrically at 600 nm. However, this method is inadequate to measure the whole-cell enzyme activity when interference by suspended biomass is present. Indoxyl is a highly fluorescent intermediate in the conversion of indole to indigo by Tod. A fluorescence-based assay was developed and applied to monitor Tod activity in whole cells of Pseudomonas putida F1 biofilm from a continuously operated biofilter. Suspended growth studies with pure cultures indicated that indoxyl, as measured by fluorescence, correlated with indigo production (r(2)=0.89) as measured by spectrophotometry. Whole-cell enzyme activity was followed during growth on a minimal medium containing toluene. The maximum normalized whole cell enzyme activity of 19+/-1.5x10(-4) mg indigo (mg protein)(-1) min(-1) was reached during early stationary phase. P. putida F1 cells from a biofilm grown on vapor phase toluene had a normalized whole-cell enzyme activity of 5.0+/-0.2x10(-4) mg indigo (mg protein)(-1) min(-1). The half-life of whole-cell enzyme activity was estimated to be between 5.5 and 8 h in both suspended and biofilm growth conditions.  相似文献   

5.
Whole cells of Pseudomonas putida containing toluene dioxygenase were able to remove all detectable trichloroethylene (TCE) from assay mixtures. The capacity of cells to remove TCE was 77 microM/mg of protein with an initial rate of removal of 5.2 nmol/min/ng of protein. TCE oxidation resulted in a decrease in the growth rate of cultures and caused rapid cell death. Addition of dithiothreitol to assay mixtures increased the TCE removal capacity of cells by up to 67% but did not prevent TCE-mediated cell death. TCE induced toluene degradation by whole cells to a rate approximately 40% of that induced by toluene itself.  相似文献   

6.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

7.
Toluene dioxygenase oxidizes toluene to (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene. This reaction is catalyzed by a multienzyme system that is induced in cells of Pseudomonas putida F1 during growth on toluene. One of the components of toluene dioxygenase has been purified to homogeneity and shown to be an iron-sulfur protein that has been designated ferredoxinTOL. The molecular weight of ferredoxinTOL was calculated to be 15,300, and the purified protein was shown to contain 2 g of atoms each of iron- and acid-labile sulfur which appear to be organized as a single [2Fe-2S]cluster. Solutions of ferredoxinTOL were brown in color and showed absorption maxima at 277, 327, and 460 nm. A shoulder in the spectrum of the oxidized protein was discernible at 575 nm. Reduction with sodium dithionite or NADH and ferredoxinTOL reductase resulted in a decrease in visible absorbance at 460 and 575 nm, with a concomitant shift in absorption maxima to 382 and 438 nm. The redox potential of ferredoxinTOL was estimated to be -109 mV. In the oxidized state, the protein is diamagnetic. However, upon reduction it exhibited prominent electron paramagnetic resonance signals with anisotropy in g values (gx = 1.81, gy = 1.86, and gz = 2.01). Anaerobic reductive titrations revealed that ferredoxinTOL is a one-electron carrier that accepts electrons from NADH in a reaction that is mediated by a flavoprotein (ferredoxinTOL reductase). The latter is the first component in the toluene dioxygenase system. Reduced ferredoxinTOL can transfer electrons to cytochrome c or to a terminal iron-sulfur dioxygenase (ISP-TOL) which catalyzes the incorporation of molecular oxygen into toluene and related aromatic substrates.  相似文献   

8.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

9.
Two toluene-sensitive mutants were generated from Pseudomonas putida IH-2000, the first known toluene-tolerant isolate, by Tn5 transposon mutagenesis. These mutants were unable to grow in the presence of toluene (log Pow 2.8) but they could grow in medium overlaid with organic solvents having a log Pow value higher than that of toluene such as p-xylene (log Pow 3.1), cyclohexane (log Pow 3.4) and n-hexane (log Pow 3.9). The Tn5 transposable element knocked out a cyoB-like gene in one mutant and a cyoC-like gene in the other mutant. Seven open reading frames were found in a 5.5-kb region containing the cyoB- and cyoC-like genes of strain IH-2000. ORFs 3–7 showed significant identity to the cyoABCDE gene products of Escherichia coli, but ORFs 1 and 2 showed no significant homology to any protein reported so far. The growth patterns of the Tn5 mutants with the inactivated cyo-like gene were similar to that of the wild-type strain in the absence of organic solvents, although the doubling times were slightly longer than that of the wild-type strain. Our findings indicate that cyo is an important gene for toluene tolerance, although its role is still unclear.  相似文献   

10.
Pseudomonas putida NCIMB 11767 oxidized phenol, monochlorophenols, several dichlorophenols and a range of alkylbenzenes (C1–C6) via an inducible toluene dioxygenase enzyme system. Biphenyl and naphthalene were also oxidized by this enzyme. Growth on toluene and phenol induced the meta-ring-fission enzyme, catechol 2,3-oxygenase, whereas growth on benzoate, which did not require expression of toluene dioxygenase, induced the ortho-ringcleavage enzyme, catechol 1,2-oxygenase. Monochlorobenzoate isomers and 2,3,5-trichlorophenol were gratuitous inducers of toluene dioxygenase, whereas 3,4-dichlorophenol was a fortuitous oxidation substrate of the enzyme. The organism also grew on 2,4- and 2,5-dichloro isomers of both phenol and benzoate, on 2,3,4-trichlorophenol and on 1-phenylheptane. During growth on toluene in nitrogen-limited chemostat culture, expression of both toluene dioxygenase and catechol 2,3-oxygenase was positively correlated with increase in specific growth rate (0.11–0.74 h-1), whereas the biomass yield coefficient decreased. At optimal dilution rates, the predicted performance of a 1-m3 bioreactor supplied with 1 g nitrogen l-1 for removal of toluene was 57 g day-1 and for removal of trichloroethylene was 3.4 g day-1. The work highlights the oxidative versatility of this bacterium with respect to substituted hydrocarbons and shows how growth rate influences the production of competent cells for potential use as bioremediation catalysts. Received: 26 June 1995 / Received revision: 4 September 1995 / Accepted: 20 September 1995  相似文献   

11.
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein.  相似文献   

12.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

13.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

14.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

15.
The genes encoding toluene dioxygenase, toluene cis-glycol dehydrogenase and catechol 2.3-oxygenase from Pseudomonas putida NCIB 11767 were cloned and expressed in Escherichia coli HB101 on a 20 kb fragment. The recombinant strain produced indigo and a variety of other coloured products. Although the enzymes were expressed in the absence of inducers, further induction was observed in the presence of toluene or benzene, implying the presence of regulatory elements on the 20 kb insert.  相似文献   

16.
Spontaneous alginate-producing (muc) variants were isolated from strains of Pseudomonas fluorescens, P. putida and P. mendocina at a frequency of 1 in 10(8) by selecting for carbenicillin resistance. The infrared spectrum of the bacterial exopolysaccharide was typical of an acetylated alginate similar to that previously described in Azotobacter vinelandii and in mucoid variants of P. aeruginosa. Mucoid variants were not isolated from P. stutzeri, P. pseudoalcaligenes, P. testosteroni, P. diminuta, P. acidovorans, P. cepacia or P. maltophilia.  相似文献   

17.
As measured by the toluene-induced bioluminescent response of Pseudomonas putida TVA8 in batch experiments, toluene dioxygenase (Tod) enzyme activities are dependent on toluene concentration between 0 and 30 mg/L. To provide a measure of the Tod activity for use in Michaelis-Menten competitive-inhibition kinetics, a correlation between toluene concentration and induced Tod activity as measured by an induced bioluminescent response of P. putida TVA8 is presented as a nondimensional Tod activity parameter. A packed-bed, radial-flow bioreactor (RFB) using the bioreporter P. putida TVA8A serves as the model system for studying the effect of the enzyme activity parameter on model predictions of vapor-phase toluene oxidation and trichloroethylene (TCE) cometabolism. Mass balances were performed on a differential section of the RFB to describe the radial transport of vapor-phase toluene and TCE through a bulk gas phase and the concomitant biological reaction in a stationary biofilm phase. The finite-element Galerkin weak-statement formulation with first-order basis functions was used to find the optimum solution to the highly nonlinear, coupled equations. For this RFB system with toluene concentrations less than 1 mg/L in the bulk gas phase, the Tod activity parameter enables accurate predictions of steady-state TCE degradation rate (0.27 microg TCE/min).  相似文献   

18.
Isolation and characterization of Pseudomonas putida R-prime plasmids   总被引:1,自引:0,他引:1  
A number of enhanced chromosome mobilizing (ECM) plasmids derived from the wide host range plasmid R68 have been used to construct R-prime plasmids carrying a maximum of two map minutes of the Pseudomonas putida PPN chromosome, using Pseudomonas aeruginosa PAO as the recipient. For one ECM plasmid, pMO61, the ability to form R-primes did not correlate with the ability to mobilize chromosomes in intrastrain crosses, suggesting that different mechanisms are involved. Physical analysis of one R-prime showed that 3.5 kb of chromosomal DNA had been inserted between the tandem IS21 sequences carried by the parent ECM plasmid.  相似文献   

19.
A purification procedure was developed to stabilize the iron-sulphur proteins of the benzene dioxygenase system from Pseudomonas putida. The intermediate electron-carrying protein has a mol. wt. of 12300 and possesses one (2Fe--2S) cluster, whereas the terminal dioxygenase has a mol.wt. of 215300 and possesses two (2Fe--2S) clusters. The order and stoicheiometry of electron transfer and of the whole system are described.  相似文献   

20.
The terminal oxygenase component (ISPNAP) of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4 was purified to homogeneity. The protein contained approximately 4 g-atoms each of iron and acid-labile sulfide per mol of ISPNAP, and enzyme activity was stimulated significantly by addition of exogenous iron. The large (alpha) and small (beta) subunits of ISPNAP were isolated by two different procedures. The NH2-terminal amino acid sequences of the alpha and beta subunits were identical to the deduced amino acid sequences reported for the ndoB and ndoC genes from P. putida NCIB 9816 and almost identical to the NH2-terminal amino acid sequences determined for the large and small subunits of ISPNAP from P. putida G7. Gel filtration in the presence of 6 M urea gave an alpha subunit with an absorption maximum at 325 nm and broad absorption between 420 and 450 nm. The alpha subunit contained approximately 2 g-atoms each of iron and acid-labile sulfide per mol of the subunit. The beta subunit did not contain iron or acid-labile sulfide. These results, taken in conjunction with the deduced amino acid sequences of the large subunits from several iron-sulfur oxygenases, indicate that each alpha subunit of ISPNAP contains a Rieske [2Fe-2S] center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号