首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Scanning tunneling microscope (STM) images of random-sequence nucleic acid polymers under water show internal structure which depends strongly on the packing density of the polymer. Images of dense aggregates have a semicrystalline order with the individual polymers adopting simple periodic structures. Loose aggregates (or isolated molecules) show structural variability with considerable local bending and curving on a nanometer scale. It is not clear to what extent this structure is induced by the operation of the microscope. In order to investigate the possibility that the structure is sequence directed, we have imaged various DNA and RNA polymers at low packing densities. We present results here for random sequence DNA, poly(dAT) · poly(dAT), poly(dA) · poly(dT), poly(dCG) · poly(dCG) and for random sequence RNA and poly(U). In contrast to loose aggregates of the random sequence material, the homopolymers show few sharp bends. Furthermore, the homopolymers appear to yield characteristic backbone patterns, usually at resolutions in excess of that obtained with random sequence polymers. The random sequence polymers show much more evidence of image distortion due to tip-molecule interactions, suggesting that they are, on average, mechanically less stable in the STM tunnel-gap than the homopolymers. Thus, while some of the structure observed in STM images is a consequence of tip-molecule interactions, it is related to sequence-directed properties of the polymer.  相似文献   

2.
L. Sun  C. Peng  Y. Hu 《Molecular simulation》2013,39(12):989-997
Monte Carlo simulations for the adsorption of polymers including random copolymer, homopolymer, diblock copolymer and two kinds of triblock copolymers, respectively, in nonselective solvent at solid–liquid interface have been performed on a simple lattice model. The effect of polymer structure on adsorption properties was examined. In simulations, all polymeric molecules are modeled as self-avoiding linear chains composed of two segments A and B while A is attractive to the surface and B is non-attractive. It was found that for all polymers, the size distribution of various configurations is determined by the linked sequence of segments and the interaction energy between segment and surface. The results of simulation show that the adsorbed amount always increases with increasing bulk concentration but the adsorption layer thickness is mostly dependent on the adsorption energy at a fixed fraction of segments A. On the other hand, diblock copolymer has always the highest surface coverage and adsorbed amount, while random copolymers and homopolymers give generally the smallest surface coverage and adsorbed amount. It is shown that the sequence of polymer chains, i.e. molecular structure, is the most important factor in affecting adsorption properties at the same composition and interaction between segment and surface. The results also show that the adsorption behavior of random copolymers is remarkably different from that of block copolymers, but acting like homopolymer.  相似文献   

3.
STM and AFM images of nucleosome DNA under water   总被引:5,自引:0,他引:5  
We have imaged DNA from the calf thymus nucleosome using a scanning tunneling microscope (STM) operated in water. The fragments are deposited onto the interface between a buffer solution and an epitaxially grown gold surface using an electrochemical tecnique. Most of the fragments are fairly straight, and when individual polymers can be identified, their length is consistent with the expected 146 basepairs (approximately 500 A). The resolution is often adequate to show signs of the 36 A helical pitch. Some images show a structure which appears to have abrupt kinks of the sort predicted by Crick and Klug (Nature 255, 530-533, 1975). In order to check that this shape is not a consequence of binding to underlying structure on the gold substrate, we have also made images of kinked structures using an atomic force microscope (AFM) with the DNA bound to glass.  相似文献   

4.
The stereochemical microstructure and crystalline structure of nearly racemic poly(alpha-ethyl gamma,DL-glutamate) obtained by esterification of biosynthetic poly(gamma-glutamic acid) were examined by NMR, DSC, and powder X-ray diffraction. The two enantiomerically pure poly(alpha-ethyl gamma-glutamate)s, as well as the racemic stereocopolymers with random and alternating microstructure, were prepared by chemical synthesis and studied in parallel to help in the interpretation of the data. The (13)C NMR analysis revealed that biosynthetic poly(alpha-ethyl gamma,DL-glutamate) consists of a block stereocopolymer accompanied by minor amounts of a mixture of the two optically pure homopolymers. The polymer is crystalline, with a degree of crystallinity and crystal structure essentially similar to those displayed by the optically pure polymers but clearly different from the alternating copolymer. Conversely, the racemic stereocopolymer with a random microstructure prepared by chemical synthesis is amorphous. The crystal structure of the racemic mixture of the D- and L-homopolymers seems to be very close to that of the biosynthetic stereocopolymer, although some indications suggesting the existence of a stereocomplex were found.  相似文献   

5.
There is a recognized need to create well-defined polymer probes for in vivo and clinical positron emission tomography (PET) imaging to guide the development of new generation polymer therapeutics. Using the RAFT polymerization technique in combination with the reactive ester approach, here we have synthesized well-defined and narrowly distributed N-(2-hydroxypropyl)methacrylamide homopolymers (pHPMA) (P1* and P2*) and random HPMA copolymers consisting of hydrophilic HPMA and hydrophobic lauryl methacrylate comonomers (P3* and P4*). The polymers had molecular weights below (P1* and P3*) and above the renal threshold (P2* and P4*). Whereas the homopolymers dissolve in isotonic solution as individual coils, the random copolymers form larger aggregates above their critical micelle concentration (~ 40 nm), as determined by fluorescence correlation spectroscopy. Structure-property relationships of the pharmacokinetics and biodistribution of the different polymer architectures were monitored in the living organism following radiolabeling with the positron emitter (18)F via fluoroethylation within a few hours. Ex vivo organ biodistribution and in vivo μPET imaging studies in male Copenhagen rats revealed that both size and the nature of the aggregate formation (hydrophobically modified copolymers) played a major role in blood clearance and biodistribution, especially concerning liver and kidney accumulation. The high-molecular-weight random copolymer P4* (hydrophobically modified), in particular, combines low liver uptake with enhanced blood circulation properties, showing the potential of hydrophobic interactions, as seen for the represented model system, that are valuable for future drug carrier design.  相似文献   

6.
Abstract

We have imaged DNA from the calf thymus nucleosome using a scanning tunneling microscope (STM) operated in water. The fragments are deposited onto the interface between a buffer solution and an epitaxially grown gold surface using an electrochemical technique. Most of the fragments are fairly straight, and when individual polymers can be identified, their length is consistent with the expected 146 basepairs (~ 500 Å). The resolution is often adequate to show signs of the 36 Å helical pitch. Some images show a structure which appears to have abrupt kinks of the sort predicted by Crick and Klug (Nature 255, 530–533,1975). In order to check that this shape is not a consequence of binding to underlying structure on the gold substrate, we have also made images of kinked structures using an atomic force microscope (AFM) with the DNA bound to glass.  相似文献   

7.
A series of poly(vinyl alcohol) amphiphilic derivatives have been prepared to obtain polymeric aggregates in aqueous phase holding thermodynamic instability. The aim was to evaluate their ability to interact with tumor cells eliciting selective cytotoxicity. The poly(vinyl alcohol) derivatives were prepared by partial substitution of poly(vinyl alcohol) (MW 10 kDa) with both oleyl chains and poly(ethylene glycol) monoethyl ethers (PEGMEE) of different molecular weights. The substitution degree was 1.5% for the oleyl chains and 1% for the PEGMEE chains (moles of substituent per 100 mol of hydroxyvinyl monomer). The polyvinyl derivatives obtained easily dissolved in water. Dynamic and static light scattering measurements on the polymer aqueous solutions indicated the formation of polymeric aggregates characterized by low polydispersity (0.232-0.299) and mean size (218-382 nm) in the range suitable for intravenous administration. Moreover, they were characterized by different packing densities and thermodynamic instabilities driving the polymers to interact with hydrophobic membranes. Among the analyzed polymers, the poly(vinyl alcohol)-co-oleylvinyl ether substituted with triethylene glycol monoethyl ether (P10(4)) provided in solution the highest affinity for hydrophobic membranes. P10(4), moreover, was the most cytotoxic toward the tumor cell lines analyzed (neuroblastoma: SH-SY5Y, IMR-32, HTLA-230. melanoma: MZ2-MEL, RPMI7932.), while it did not appreciably alter the viability of the normal resting lymphocytes. The peculiar behavior of the P10(4) aggregates has been correlated to their high thermodynamic instability in solution due to the high packing density that triggers the polymeric aggregates to interact with hydrophobic membranes such as the tumor cell membranes, thus eliciting cytotoxicity.  相似文献   

8.
Abstract

Antibodies have been raised to the synthetic DNA polymer poly(dG)·poly(dC). These antibodies have the ability to distinguish this right-handed polymer from natural mixed sequence DNA, as well as from other right- and left-handed synthetic DNA polymers. They show reduced but measurable binding to synthetic polymers which contain various combinations of guanine and cytosine polynucleotides suggesting that both helical shape and sequence are recognized by this antiserum.  相似文献   

9.
Synthetic known sequence polypeptides poly(Tyrosine-Glutamic acid-Alanine-Glycine) T-G-A-Gly), were found to be very immunogenic in responder inbred guinea pigs. Two and one-half micrograms were enough to elicit both humoral and cellular responses. Only the alpha-helical oligomers were immunogenic and were able to inhibit the homologous antigen-antibody reactions. The random polymers of comparable amino acid composition, i.e., poly(glutamic acid60alanine40) (GA), poly(glutamic acid50 tyrosin50) (GT), poly(glutamic acid60alanine30tyrosine10)(GAT10), did not inhibit. The antibodies against (T-G-A-Gly)n did not bind to the closely related known sequence polymer poly tyrosine-alanine-glutamic acid-glycine) (T-A-G-Gly)n or to the above random polymers. It is thus concluded that antibodies against (T-G-A-Gly)n are directed against conformational determinats.  相似文献   

10.
This paper describes the model used to estimate the parameters of caffeine-poly(riboadenylate) (poly(A)) interactions from corresponding 1H-NMR measurements. The model of insertion and aggregate binding describes the non-cooperative insertion of a molecule C into an interspace between two monomers of a homopolymer in competition with aggregate binding. It contains two binding constants, K1 for insertion and K2 for the interaction of monomeric A units of the polymer with C molecules in bound aggregates, and two cooperativity parameters, Kcc for stacking of C molecules within aggregates and tau which is thought to be due to conformational adaptation of the polymer to those bound aggregates which cover more than one A unit. In contrast to other models, the size of a binding site (within the aggregates) is less than one monomeric unit, with n denoting the maximum number of C molecules per A unit in bound aggregates. The model is developed for general n by means of the method of sequence-generating functions. For n = 2 and n = 3, the correctness of the model treatment was checked by the matrix method. The model is applicable to the binding of aggregates to homopolymers, which are flexible enough to fit their structure to the aggregates.  相似文献   

11.
A scanning tunneling microscope (STM) was used to observe the temporal formation and organization of dehydrogenative polymer (DHP) synthesized from coniferyl alcohol. The images obtained elucidate this structure for the first time. The structure of DHP, as seen from STM images, shows long-range order. It appears that DHP consists of building units or modules assembled into larger assemblies called supermodules. Supermodules are interconnected into the overall lattice-like polymer structure with or without spherical regions. One module consists of about 20 monomers, while the supermodule contains about 500 monomers. Calculated molecular weights for modules and supermodules agree with DHP molecular weight distribution peaks. Samples prepared at two different pH values, 6.4 and 7.6, have the same characteristics. The results presented demonstrate that the process of lignification, even in in vitro conditions, is highly ordered, and as such contribute to our understanding of the structure of lignin, a significant constitutive and functional element of cell walls.  相似文献   

12.
CC-1065, Benzo[1,2-b:4,3-b']dipyrrole-3(2H)-carboxamide, 7-[[1,6-dihydro-4-hydroxy-5-methoxy-7-[(4,5,8,8a-tetrahydro-7-methyl-4- oxocyclopropa[c]pyrrolo[3,2-e]indol-2(1H)-yl)carbonyl]benzo [1,2-b:4,3-b']dipyrrol-3(2H)-yl]carbonyl]-1,6-dihydro-4-hydroxy- 5-methoxy-, (7bR,8aS), binds to the B form of poly(dl-5BrdC).poly(dl-5BrdC) to yield a reversibly bound species whose stability with respect to an irreversibly bound species (presumably the inosine N-3 adduct) is much greater than it is for other DNA polymers. Competitive binding experiments with netropsin, show that this reversibly bound species of CC-1065 contains CC-1065 in the minor groove of the double helix. A review of the CC-1065 binding data obtained on other synthetic DNA polymers suggests that the widely different rates of species conversion shown by these polymers may result from small differences in DNA secondary structure rather than from different alkylating abilities of the adenine or inosine N-3 active site. CC-1065 converts the Z-form of poly(dl-5BrdC).poly(dl-5BrdC) in 3.5 M sodium chloride to the B form and does not bind to the Z form in this solvent system. CC-1065 bound to the B form polymer inhibits the formation of the Z form if the helix is saturated with CC-1065. Regions of the polymer without bound CC-1065 can convert to the Z form with added salt, producing a situation where the polymer contains both the B and Z conformations. In 4.0 M sodium chloride, where the Z conformation is also predominate, the addition of CC-1065 causes chiral aggregates to form, and CC-1065 binds to the aggregates. The addition of dimethylformamide in the absence of CC-1065 or a simple dilution of the 4.0 M sodium chloride polymer solution with water also causes aggregation, indicating that the Z form of this polymer in 4.0 M sodium chloride is unstable with respect to an aggregated form.  相似文献   

13.
Specificity of the binding of fd gene 5 protein to polydeoxyribonucleotides   总被引:1,自引:0,他引:1  
The long-wavelength circular dichroism (CD) changes induced by binding of fd gene 5 protein to the alternating DNA sequences poly[d(A-C)] and poly[d(C-T)] were similar to those induced by the protein complexed with the homopolymers poly[d(A)], poly[d(C)], and poly[d(T)]. The fd gene 5 protein showed different binding affinities for the various polymers. The affinity for the alternating sequences was not compositionally weighted with respect to the affinities for the homopolymers, indicating that both base composition and base sequence of the template are important for the binding of fd gene 5 protein.  相似文献   

14.
Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called soft interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard nonspecific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these “soft” interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol (PEG), molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.  相似文献   

15.
16.
Abstract

The long-wavelength circular dichroism (CD) changes induced by binding of fd gene 5 protein to the alternating DNA sequences poly[d(A-C)] and poly [d(C-T)] were similar to those induced by the protein complexed with the homopolymers poly[d(A)], poly[d(C)], and poly[d(T)]. The fd gene 5 protein showed different binding affinities for the various polymers. The affinity for the alternating sequences was not compositionally weighted with respect to the affinities for the homopolymers, indicating that both base composition and base sequence of the template are important for the binding of fd gene 5 protein.  相似文献   

17.
We have synthesized and studied the CD spectra of five new double-stranded RNA polymers: poly[r(A-G)·r(C-U)], poly[r(A-U-C)·r(G-A-U)], poly[r(A-C-U)·r(A-G-U)], poly[r(A-A-C)·r(G-U-U)], and poly[r(A-C-C)·r(G-G-U)]. Together with previously published spectra of seven other RNA sequences, the spectra of these new sequences provide a library sufficient to approximate the spectra of all other RNA sequences by first-neighbor formulas and, in addition, give four spectra with which we may test the validity of first-neighbor approximations. (1) We find that the spectra of RNA sequence isomers are very different, but that the spectra essentially do obey first-neighbor relationships. (2) We have derived tentative first-neighbor assignments of negative bands at about 295 and 210 nm in the CD spectra. (3) A test of spectral independence shows that among the 12 polymer spectra there are at least seven significant independent spectral shapes, one less than the eight needed to give the most accurate spectral analysis of an unknown RNA sequence for its first-neighbor frequencies. (4) Spectra are calculated for RNAs of random base composition, approximating natural RNAs having complex sequences. (5) A T-matrix of spectral components assigned to the first-neighbor base pairs is derived from 10 of the spectra. This matrix allows an estimation of the CD spectrum of any other known RNA sequence or an analysis of the spectrum of an unknown sequence for its distribution of first-neighbor base-pair frequencies. (6) Test analyses of two of the synthetic polymers and of two natural RNAs set a probable limit on the accuracy of first-neighbor frequency determinations using this T-matrix. (7) Finally, we summarize in an appendix the melting temperatures for all the RNA and corresponding DNA sequences; it appears that the Tm values of both DNAs and RNAs approximately obey first-neighbor relationships.  相似文献   

18.
Higher plants have two complexes that bind the m7G-cap structure of mRNA and mediate interactions between mRNA and ribosomal subunits, designated eIF4F and eIFiso4F. Both complexes contain a small subunit that binds the 5'-cap structure of mRNA, and a large subunit, eIF4G or eIFiso4G, that binds other translation factors and RNA. Sequence-specific proteases were used to cleave native cap-binding complexes into structural domains, which were purified by affinity chromatography. We show here that eIFiso4G contains a central protease-resistant domain that binds specifically to nucleic acids. This domain spans Gln170 to Glu443 and includes four of the six homology blocks shared by eIFiso4G and eIF4G. A slightly shorter overlapping sequence, from Gly202 to Lys445, had no nucleic acid binding activity, indicating that the N-terminal end of the nucleic acid binding site lies within Gln170 to Arg201. The binding of the central domain and native eIFiso4F to RNA homopolymers and double- and single-stranded DNAs was studied. Both molecules had highest affinity for poly(G) and recognized single- and double-stranded sequences.  相似文献   

19.
Stabilization of collagen fibrils by hydroxyproline   总被引:1,自引:0,他引:1  
G Némethy  H A Scheraga 《Biochemistry》1986,25(11):3184-3188
The substitution of hydroxyproline for proline in position Y of the repeating Gly-X-Y tripeptide sequence of collagen-like poly(tripeptide)s (i.e., in the position in which Hyp occurs naturally) is predicted to enhance the stability of aggregates of triple helices, while the substitution of Hyp in position X (where no Hyp occurs naturally) is predicted to decrease the stability of aggregates. Earlier conformational energy computations have indicated that two triple helices composed of poly(Gly-Pro-Pro) polypeptide chains pack preferentially with a nearly parallel orientation of the helix axes [Nemethy, G., & Scheraga, H.A. (1984) Biopolymers 23, 2781-2799]. Conformational energy computations reported here indicate that the same packing arrangement is preferred for the packing of two poly(Gly-Pro-Hyp) triple helices. The OH groups of the Hyp residues can be accommodated in the space between the two packed triple helices without any steric hindrance. They actually contribute about 1.9 kcal/mol per Gly-Pro-Hyp tripeptide to the packing energy, as a result of the formation of weak hydrogen bonds and other favorable noncovalent interatomic interactions. On the other hand, the substitution of Hyp in position X weakens the packing by about 1.7 kcal/mol per Gly-Hyp-Pro tripeptide. Numerous published experimental studies have established that Hyp in position Y stabilizes an isolated triple helix relative to dissociated random coils, while Hyp in position X has the opposite effect. We propose that Hyp in position Y also enhances the stability of the assembly of collagen into microfibrils while, in position X, it decreases this stability.  相似文献   

20.
An overview of different applications of polymer interactions with ion-exchange and dye-affinity chromatographic matrices is presented here. The strength of interaction between the ligand and the polymer plays a crucial role in deciding the mode of chromatographic application. Charged, non-ionic and thermosensitive polymers such as poly(ethylene imine), poly(N-vinyl pyrrolidone) and poly(vinyl caprolactam) respectively, show different degrees of interaction with the dye molecules in dye ligand chromatography. Polymers, with their ability of multipoint and hence strong attachment to the chromatographic matrices, were used as efficient displacers in displacement chromatography. The polymer displacement resulted in better recoveries and sharper elution profiles than traditional salt elutions. The globule–coil transition of the thermosensitive reversible soluble–insoluble polymer, poly(vinyl caprolactam), can be exploited in dye-affinity columns for the temperature induced displacement of the bound protein. In another situation, prior to the column chromatography of crude protein extract, polymers formed complexes with the dye matrix and “shielded” the column. The polymer shielding decreased the nonspecific interactions without affecting the specific interactions of the target protein to the dye matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号