首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally, glycogen synthase (GS) has been considered to catalyze the key step of glycogen synthesis and to exercise most of the control over this metabolic pathway. However, recent advances have shown that other factors must be considered. Moreover, the control of glycogen deposition does not follow identical mechanisms in muscle and liver. Glucose must be phosphorylated to promote activation of GS. Glucose-6-phosphate (Glc-6-P) binds to GS, causing the allosteric activation of the enzyme probably through a conformational rearrangement that simultaneously converts it into a better substrate for protein phosphatases, which can then lead to the covalent activation of GS. The potency of Glc-6-P for activation of liver GS is determined by its source, since Glc-6-P arising from the catalytic action of glucokinase (GK) is much more effective in mediating the activation of the enzyme than the same metabolite produced by hexokinase I (HK I). As a result, hepatic glycogen deposition from glucose is subject to a system of control in which the 'controller', GS, is in turn controlled by GK. In contrast, in skeletal muscle, the control of glycogen synthesis is shared between glucose transport and GS. The characteristics of the two pairs of isoenzymes, liver GS/GK and muscle GS/HK I, and the relationships that they establish are tailored to suit specific metabolic roles of the tissues in which they are expressed. The key enzymes in glycogen metabolism change their intracellular localization in response to glucose. The changes in the intracellular distribution of liver GS and GK triggered by glucose correlate with stimulation of glycogen synthesis. The translocation of GS, which constitutes an additional mechanism of control, causes the orderly deposition of hepatic glycogen and probably represents a functional advantage in the metabolism of the polysaccharide.  相似文献   

2.
The pattern of glycogen deposition in skeletal muscles of varying fibre composition was examined in rats during the starved-to-fed transition. In all the muscles studied, glycogen concentrations steadily increased during the first 8 h after chow re-feeding, and the fed value was exceeded. Rates of glycogen deposition varied, not with muscle fibre composition, but with the extent of glycogen depletion during starvation. There was no evidence for skeletal-muscle glycogen breakdown during the period of hepatic glycogenesis, making it unlikely that recycling of carbon from muscle glycogen to lactate is quantitatively important for the provision of glycogenic precursors to the liver, but moderate glycogen loss was observed from 8 to 24 h after re-feeding, when the liver is in the lipogenic mode. The factors influencing glucose disposal by skeletal muscle after re-feeding are discussed.  相似文献   

3.
The glucose storage polymer glycogen is generally considered to be an important source of energy for skeletal muscle contraction and a factor in exercise endurance. A genetically modified mouse model lacking muscle glycogen was used to examine whether the absence of the polysaccharide affects the ability of mice to run on a treadmill. The MGSKO mouse has the GYS1 gene, encoding the muscle isoform of glycogen synthase, disrupted so that skeletal muscle totally lacks glycogen. The morphology of the soleus and quadriceps muscles from MGSKO mice appeared normal. MGSKO-null mice, along with wild type littermates, were exercised to exhaustion. There were no significant differences in the work performed by MGSKO mice as compared with their wild type littermates. The amount of liver glycogen consumed during exercise was similar for MGSKO and wild type animals. Fasting reduced exercise endurance, and after overnight fasting, there was a trend to reduced exercise endurance for the MGSKO mice. These studies provide genetic evidence that in mice muscle glycogen is not essential for strenuous exercise and has relatively little effect on endurance.  相似文献   

4.
I Lundquist 《Enzyme》1975,20(4):234-247
The effect of injection of glycogenolytic enzymes on tissue glycogen, blood glucose and plasma insulin was studied in mice. No effects were observed following phosphorylase, whereas the hydrolytic enzymes, alpha-amylase and acid amyloglucosidase depressed liver glycogen. In addition acid amyloglucosidase induced a decrease in blood glucose, a slight elevation of plasma insulin and a marked increase in tolbutamide-stimulated insulin release. At the doses given none of the enzymes affected muscle glycogen. Amyloglucosidase pretreatment markedly enhanced insulin release induced by glibenclamide, leucine, isoleucine, lysine and glucose whereas insulin release stimulated by IPNA, ACTH, glucagon and "CCK-PZ" was unaffected. Injection of acid amyloglucosidase has a profound influence on carbohydrate content and regulation in mice. It is suggested that the dependence or independence of amyloglucosidase activity among the insulin secretagogues tested might reflect different or partially different mechanisms in the process of insulin secretion.  相似文献   

5.
This study investigates the effects of subchronic exposure to organophosphate insecticide Malathion (Fyfanon 50 EC 500 g/l) of commercial grade. It was administered intragastrically by stomach tube in the amount of 1 ml of corn oil containing 100 mg/kg body weight (BW) daily for 32 days. At the end of the experiment, acetylcholinesterase activity (AChE), haematocrit value, haemoglobin content, and blood glucose concentration were estimated. The liver and the skeletal muscle were removed to determine hepatic and muscular glycogen, hepatic proteins and lipids contents. No sign of toxicity was observed until the end of experiment. No significant change in the haematocrit value was observed, in spite of the significant increase in haemoglobin content, which can be considered as an adaptive situation in order to guarantee a good oxygenation in response to pulmonary damage induced following subchronic exposure to organophosphorus compound. Malathion intoxication decreased significantly hepatic proteins and lipid contents that could be associated to liver gluconeogenesis. This result was coupled with a significant decrease in muscular glycogen rate, which indicates a stimulated glycogenolysis in favour of glucose release into the blood until reaching hyperglycaemia. Several studies indicate that hyperglycaemia is temporary, which is probably due to a stimulated glycogenesis that increases hepatic glycogen deposition and return of glucose to control levels, as demonstrated in our study. One possible explanation for these results could be the turnover of glucose by a succession between its release via glycogenolysis and gluconeogenesis, which involves abnormal hyperglycaemia, and its storage via glycogenesis in subchronic exposure to malation.  相似文献   

6.
Glycogen deposition and glucose tolerance were examined in female mice after 24 days of oral treatment with natural (17 beta-estradiol and progesterone) and synthetic (ethinyl estradiol and norethisterone acetate) sex steroids, administered individually and in estrogen-progestin combination. Doses were 5 micrograms/kg/day for estrogens and 1 mg/kg/day for progestins. Compared with diestrus control mice, each treatment increased glycogen deposition in liver, uterus, heart and biceps femoris muscle. 17 beta-Estradiol produced the greatest increments. Progesterone produced considerably smaller increments and antagonized the glycogenic effects of 17 beta-estradiol. Ethinyl estradiol and norethisterone acetate generally induced similar changes in glycogen deposition. Treatments containing 17 beta-estradiol improved glucose tolerance. Although glucose tolerance was not significantly altered by the other sex steroid treatments, the changes in glycogen deposition indicate important effects on tissue carbohydrate metabolism.  相似文献   

7.
Morphological and physiological disparities between 20 captive and 11 wild capercaillies were determined. Birds, their pectoral and leg muscles, hearts, livers and gizzards were weighed. The length of small intestines and caeca were measured. Haemoglobin, haematocrit, glucose, triglycerides, total protein, uric acid and thyroid hormones as well as the cytochrome c-oxidase activity of the pectoral muscle and heart were determined. The glycogen and protein contents of pectoral and leg muscles and liver were analysed. Chemical composition (water, fat, protein, ash) of muscles and liver was determined. Captive males had heavier pectoral muscles than wild ones. The result was opposite in females. Wild birds had heavier hearts, livers, and gizzards, and also longer small intestines and caeca than captive birds. The cytochrome c-oxidase activity of pectoral muscle and heart was higher in wild than in hand-reared birds. The chemical composition of livers of wild birds differed significantly from that of hand-reared capercaillies. Plasma uric acid and T(4) concentrations were higher in captive than in wild birds. The observed differences in digestive system and liver can result in diminished ability of captive birds to utilise natural food nutrients. Decreased cytochrome c-oxidase activity of hand-reared birds can affect their takeoff and flying capacity and increase their vulnerability to predation. These facts may contribute to the low survival of hand-reared birds after release.  相似文献   

8.
Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex.  相似文献   

9.
The effect of the glucocorticoids, insulin, and glucose concentration on glycogen deposition in adult rat liver parenchymal cells maintained in a chemically defined, serum-free medium has been studied. Increasing the medium concentration of glucose from 5.6 mM to 30.6mM in the absence of hormones increased cellular glycogen content from 6.5 to 51 μg of glycogen per mg of cell protein. Treatment of the cells with insulin increased the glycogen content by 15 to 30% at medium glucose concentrations above 10.6 mM. The addition of the synthetic glucocorticoid, dexamethasone, to the culture medium resulted in 40 to 105% increases in glycogen content at glucose concentrations greater than 5.6 mM. The addition of dexamethasone and insulin together in the culture medium resulted in an increase in glycogen content that was greater than the additive effect of each hormone alone. This established that glucose concentrations above 10.6 mM stimulate glycogen deposition in the absence of any hormonal stimulus. In addition, glucocorticoids directly stimulate glycogen deposition at glucose concentrations which are greater than physiological (5.6 mM).  相似文献   

10.
Regulation between the fed and fasted states in mammals is partially controlled by peroxisome proliferator‐activated receptor‐α (PPAR‐α). Expression of the receptor is high in the liver, heart and skeletal muscle, but decreases with age. A combined 1H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography‐mass spectrometry metabolomic approach has been used to examine metabolism in the liver, heart, skeletal muscle and adipose tissue in PPAR‐α‐null mice and wild‐type controls during ageing between 3 and 13 months. For the PPAR‐α‐null mouse, multivariate statistics highlighted hepatic steatosis, reductions in the concentrations of glucose and glycogen in both the liver and muscle tissue, and profound changes in lipid metabolism in each tissue, reflecting known expression targets of the PPAR‐α receptor. Hepatic glycogen and glucose also decreased with age for both genotypes. These findings indicate the development of age‐related hepatic steatosis in the PPAR‐α‐null mouse, with the normal metabolic changes associated with ageing exacerbating changes associated with genotype. Furthermore, the combined metabolomic and multivariate statistics approach provides a robust method for examining the interaction between age and genotype.  相似文献   

11.
Liver homogenates of avian species, but not of mammals, form glycogen from glucose, mannose, fructose and galactose. Incorporation of labelled glucose, fructose and mannose, but not of labelled galactose, into glycogen is diluted isotopically by unlabelled glucose. Except for fructose, glycogen formation from other substrates by pigeon liver homogenates compares favourably with that from the same substrates in pigeon liver slices. Optimum conditions for glycogen synthesis from glucose by pigeon liver homogenate are: medium of incubation, 0.175m-sucrose-45mm-potassium chloride-15mm-glycylglycine buffer, pH7.5; concentration of substrate, 15mm; concentration of tissue, less than 120mg./ml.; temperature of incubation, 37-43 degrees ; atmosphere, oxygen. Uncouplers of oxidative phosphorylation, Ca(2+), EDTA, PP(i), 2-deoxyglucose 6-phosphate and microsomal fraction of rat liver are inhibitory to glycogen synthesis from glucose. Starvation of pigeons for 24 and 48hr. leads to a slight stimulation of glycogen synthesis in their liver homogenates as compared with fed controls. Pigeon liver homogenates can be separated into subcellular fractions that on reconstitution can synthesize glycogen. All the enzymes of the glycogen pathway except soluble high-K(m) glucokinase are present in pigeon liver.  相似文献   

12.
Skeletal muscle glycogen is considered to be an important source of energy for contraction and increasing the level of the glucose polymer is generally thought to improve exercise performance in humans. A genetically modified mouse model (GSL30), which overaccumulates glycogen due to overexpression of a hyperactive form of glycogen synthase, was used to examine whether increasing the level of the polysaccharide enhances the ability of mice to run on a treadmill. The skeletal muscle of the GSL30 mice had large deposits of glycogen. There were no significant increases in the work performed by GSL30 mice as compared to their respective wild type littermates when exercised to exhaustion. The amount of muscle glycogen utilized by GSL30 mice, however, was greater, while the amount of liver glycogen consumed during exhaustive exercise was less than wild type animals. This result suggests that increased muscle glycogen stores do not necessarily improve exercise performance in mice.  相似文献   

13.
Carbohydrate nutrition before, during, and after exercise   总被引:1,自引:0,他引:1  
The role of dietary carbohydrates (CHO) in the resynthesis of muscle and liver glycogen after prolonged, exhaustive exercise has been clearly demonstrated. The mechanisms responsible for optimal glycogen storage are linked to the activation of glycogen synthetase by depletion of glycogen and the subsequent intake of CHO. Although diets rich in CHO may increase the muscle glycogen stores and enhance endurance exercise performance when consumed in the days before the activity, they also increase the rate of CHO oxidation and the use of muscle glycogen. When consumed in the last hour before exercise, the insulin stimulated-uptake of glucose from blood often results in hypoglycemia, greater dependence on muscle glycogen, and an earlier onset of exhaustion than when no CHO is fed. Ingesting CHO during exercise appears to be of minimal value to performance except in events lasting 2 h or longer. The form of CHO (i.e., glucose, fructose, sucrose) ingested may produce different blood glucose and insulin responses, but the rate of muscle glycogen resynthesis is about the same regardless of the structure.  相似文献   

14.
Glycogen content in the brain, liver and skeletal muscles of rats bearing ascite Zajdela hepatoma (AZH) and solid 27 hepatoma (27-H) has been studied. Serum glucose levels directly correlated with liver glycogen reserves. In the terminal stage of tumor growth depletion of liver glycogen was observed, while the stores of muscle glycogen did not diminish. Within 1-4 days (AZH) and 15-30 days (27-H) after implantation the stores even exceeded those of control healthy rats. In the terminal stage, in spite of hypoglycaemia development, the content of brain glycogen was significantly elevated in both groups of animals.  相似文献   

15.
The direct effects of insulin and glucose on glycogen accumulation were compared using monolayers of chicken embryo hepatocytes which, when cultured in chemically defined medium without hormones, retain viability for several days but become depleted of glycogen. The data strongly suggest that insulin is the major direct signal for hepatic glycogen synthesis, while glucose supports glycogen accumulation primarily in its role as a substrate. Insulin alone, when added to the cells in physiological concentrations, either shortly after isolation or throughout culture, restored glycogen to the maximal levels found in the liver of the fed chicken. Addition of increasing amounts of glucose in the absence of insulin, in contrast, yielded proportional but limited increases in glycogen deposition attaining not more than 30% of the maximal storage capacity of the cells. This hormone-independent glycogenesis was characterized by a 30-min burst of glycogen deposition immediately following a stepped increase of glucose, with no detectable change in glycogen synthase activity. Insulin-dependent glycogenesis evidenced a much slower rate of glycogen deposition and was accompanied by a near tripling of glycogen synthase activity. Insulin-induced glycogen stores were broken down following removal of the hormone, even when glucose was present in great excess, indicating that the cells require insulin to maintain as well as build up maximal levels of glycogen. In the presence of glucagon, insulin-induced glycogen stores were rapidly degraded, but glucose-induced glycogenesis was not inhibited. The actions of insulin and glucose in this system are both qualitatively and quantitatively similar to those that have been observed in the diabetic animal.  相似文献   

16.
Rat transforming growth factor alpha (TGF alpha) inhibits glycogen synthesis in rat and guinea pig hepatocyte cultures and counteracts the stimulation of glycogen deposition and activation of glycogen synthase caused by insulin. The EC50 for inhibition of glycogen deposition was 0.2nM. The inhibition of glycogen synthesis was also observed in the absence of extracellular Ca2+ and was not blocked by indomethacin, suggesting that it is not mediated by production of prostaglandins. Since TGF alpha is produced by hepatocytes during liver regeneration and by macrophages during endotoxin stimulation, it may have an autocrine/paracrine effect on hepatic carbohydrate metabolism in these states, and may account for the low hepatic glycogen levels during liver regeneration and the impaired glucose tolerance associated with sepsis.  相似文献   

17.
Blood glucose was significantly decreased by insulin (4 I.U./kg). Glucagon (1 mg/kg) and Cortisol (5 mg/kg) administration produced a significant hyperglycaemia. Insulin administration did not modify liver glycogen levels. Glucagon showed a marked liver glycogen mobilization. Cortisol stimulated liver glycogen deposition. Insulin and Glucagon showed a significant inverse effect on gluconeogenesis from (U-14C)glutamate, decreasing and increasing 14C-glucose formation respectively. Hormonal treatments did not influence the very low levels of incorporation of (U-14C)glutamate into liver and muscle glycogen.  相似文献   

18.
During hepatic regeneration a drop in the liver glycogen content along with a lower blood glucose level have been observed. These data are difficult to correlate with the rise of blood glucagon and the drop of insulin shown at the same times after partial hepatectomy. Therefore, liver glucose-6-phosphatase activity has been studied at 1.5, 4, 15 and 24 h, since that enzyme is involved in the release of glucose from the cell. 4 and 15 h after partial hepatectomy a remarkable decrease in glucose-6-phosphatase activity is observed. These results are discussed in view of the higher metabolic demand of regenerating liver.  相似文献   

19.
Glycogen synthesis in the perfused liver of the starved rat   总被引:1,自引:18,他引:1  
1. In the isolated perfused liver from 48h-starved rats, glycogen synthesis was followed by sequential sampling of the two major lobes. 2. The fastest observed rates of glycogen deposition (0.68–0.82μmol of glucose/min per g fresh liver) were obtained in the left lateral lobe, when glucose in the medium was 25–30mm and when gluconeogenic substrates were present (pyruvate, glycerol and serine: each initially 5mm). In this situation there was no net disappearance of glucose from the perfusion medium, although 14C from [U-14C]glucose was incorporated into glycogen. There was no requirement for added hormones. 3. In the absence of gluconeogenic precursors, glycogen synthesis from glucose (30mm) was 0–0.4μmol/min per g. 4. When livers were perfused with gluconeogenic precursors alone, no glycogen was deposited. The total amount of glucose formed was similar to the amount converted into glycogen when 30mm-glucose was also present. 5. The time-course, maximal rates and glucose dependence of hepatic glycogen deposition in the perfused liver resembled those found in vivo in 48h-starved rats, during infusion of glucose. 6. In the perfused liver, added insulin or sodium oleate did not significantly affect glycogen synthesis in optimum conditions. In suboptimum conditions (i.e. glucose less than 25mm, or with gluconeogenic precursors absent) insulin caused a moderate acceleration of glycogen deposition. 7. These results suggest that on re-feeding after starvation in the rat, hepatic glycogen deposition could be initially the result of continued gluconeogenesis, even after the ingestion of glucose. This conclusion is discussed, particularly in connexion with the role of hepatic glucokinase, and the involvement of the liver in the glucose intolerance of starvation.  相似文献   

20.
Glycogen and its metabolism   总被引:1,自引:0,他引:1  
Glycogen is a branched polymer of glucose which serves as a reservoir of glucose units. The two largest deposits in mammals are in the liver and skeletal muscle but many cells are capable synthesizing glycogen. Its accumulation and utilization are under elaborate controls involving primarily covalent phosphorylation and allosteric ligand binding. Both muscle and liver glycogen reserves are important for whole body glucose metabolism and their replenishment is linked hormonally to nutritional status. Control differs between muscle and liver in part due to the existence of different tissue-specific isoforms at key steps. Control of synthesis is shared between transport into the muscle and the step catalyzed by glycogen synthase. Breakdown of liver glycogen, as part of blood glucose homeostasis, is also in response to nutritional cues. Muscle glycogen serves only to fuel muscular activity and its utilization is controlled by muscle contraction and by catecholamines. Though the number of enzymes directly involved in the metabolism of glycogen is quite small, many more proteins act indirectly in a regulatory capacity. Defects in the basic metabolizing enzymes lead to severe consequences whereas, with some exceptions, mutations in the regulatory proteins appear to cause a more subtle phenotypic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号