首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme—the protonated C41 base triple—and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.  相似文献   

2.
Genome-wide association studies (GWAS) have successfully identified many genetic variants associated with complex diseases and traits. However, functional consequence of genetic variants studied in GWAS is not yet fully investigated, which would hinder the application of GWAS. We therefore performed a systematic functional analysis of HapMap SNPs, which have been most commonly used as the reference panel for GWAS. Our study highlights several characteristics of HapMap SNPs and identifies subsets of genetic variants with interesting functional implication. The results show that HapMap SNPs have good coverage within RefSeq genes, especially within known disease-related genes. On the other hand, only a small percentage of SNPs are non-synonymous SNPs while many SNPs are actually located at gene deserts. Moreover, many functionally important variants are not yet still interrogated. A redesigned SNP reference panel with additional functionally important variants would be useful to identify disease-causal variants in the future genome-wide studies.  相似文献   

3.
CFE88 is a conserved essential gene product from Streptococcus pneumoniae. This 227-residue protein has minimal sequence similarity to proteins of known 3D structure. Sequence alignment models and computational protein threading studies suggest that CFE88 is a methyltransferase. Characterization of the conformation and function of CFE88 has been performed by using several techniques. Backbone atom and limited side-chain atom NMR resonance assignments have been obtained. The data indicate that CFE88 has two domains: an N-terminal domain with 163 residues and a C-terminal domain with 64 residues. The C-terminal domain is primarily helical, while the N-terminal domain has a mixed helical/extended (Rossmann) fold. By aligning the experimentally observed elements of secondary structure, an initial unrefined model of CFE88 has been constructed based on the X-ray structure of ErmC' methyltransferase (Protein Data Bank entry 1QAN). NMR and biophysical studies demonstrate binding of S-adenosyl-L-homocysteine (SAH) to CFE88; these interactions have been localized by NMR to the predicted active site in the N-terminal domain. Mutants that target this predicted active site (H26W, E46R, and E46W) have been constructed and characterized. Overall, our results both indicate that CFE88 is a methyltransferase and further suggest that the methyltransferase activity is essential for bacterial survival.  相似文献   

4.
A quantitative structure activity relationship study was performed on different groups of anti-tuberculosis drug compound for establishing quantitative relationship between biological activity and their physicochemical /structural properties. In recent years, a large number of herbal drugs are promoted in treatment of tuberculosis especially due to the emergence of MDR (multi drug resistance) and XDR (extensive drug resistance) tuberculosis. Multidrug-resistant TB (MDR-TB) is resistant to front-line drugs (isoniazid and rifampicin, the most powerful anti-TB drugs) and extensively drug-resistant TB (XDR-TB) is resistant to front-line and second-line drugs. The possibility of drug resistance TB increases when patient does not take prescribed drugs for defined time period. Natural products (secondary metabolites) isolated from the variety of sources including terrestrial and marine plants and animals, and microorganisms, have been recognized as having antituberculosis action and have recently been tested preclinically for their growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. A quantitative structure activity relationship (QSAR) studies were performed to explore the antituberculosis compound from the derivatives of natural products . Theoretical results are in accord with the in vitro experimental data with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Antitubercular activity was predicted through QSAR model, developed by forward feed multiple linear regression method with leave-one-out approach. Relationship correlating measure of QSAR model was 74% (R(2) = 0.74) and predictive accuracy was 72% (RCV(2) = 0.72). QSAR studies indicate that dipole energy and heat of formation correlate well with anti-tubercular activity. These results could offer useful references for understanding mechanisms and directing the molecular design of new lead compounds with improved anti-tubercular activity. The generated QSAR model revealed the importance of structural, thermodynamic and electro topological parameters. The quantitative structure activity relationship provides important structural insight in designing of potent antitubercular agent.  相似文献   

5.
Males and females usually invest asymmetrically in offspring. In species lacking parental care, females influence offspring in many ways, while males only contribute genetic material via their sperm. For this reason, maternal effects have long been considered an important source of phenotypic variation, while paternal effects have been presumed to be absent or negligible. The recent surge of studies showing trans-generational epigenetic effects questions this assumption, and indicates that paternal effects may be far more important than previously appreciated. Here, we test for sex-linked paternal effects in Drosophila melanogaster on a life-history trait, and find substantial support for both X- and Y-linked effects.  相似文献   

6.
Creatine is a naturally occurring compound obtained in humans from endogenous production and consumption through the diet. It is used as an ergogenic aid to improve exercise performance and increase fat-free mass. Lately, creatine’s positive therapeutic benefits in various oxidative stress-associated diseases have been reported in literature and, more recently, creatine has also been shown to exert direct antioxidant effects. Oxidatively-challenged DNA was analysed to show possible protective effects of creatine. Acellular and cellular studies were carried out. Acellular assays, performed using molecular approaches, showed that creatine protects circular and linear DNA from oxidative attacks.  相似文献   

7.
Proteorhodopsin (PR) is a recently discovered ubiquitous eubacterial retinal-binding light-driven proton pump. Almost 1000 PR variants are widely distributed in species of marine and freshwater bacteria, suggesting PR's important photobiological role. PR is a typical seven-transmembrane α-helical membrane protein and as such poses a significant challenge to structural studies. Attempts to crystallize PR have not been successful, and its three-dimensional structure remains unknown. We show that PR reconstituted in lipids gives well-resolved magic-angle spinning NMR spectra of high signal-to-noise ratio. We report sequential assignment of 13C and 15N backbone and side-chain chemical shifts for 103 of 238 residues in PR, achieved by three-dimensional chemical shift correlation experiments performed on two samples with different patterns of reverse labeling. The chemical shift analysis gives a number of important structural insights not available from other studies: we have established protonation states of several carboxylic acids, identified the boundaries and distortions of transmembrane α-helices, and detected secondary structure elements in the loops. We confirmed that internal Asp227, which was proposed to form part of the Schiff base counterion, is ionized, while Glu142, which is located close to the extracellular surface, is neutral, in agreement with earlier predictions. We infer that, similar to bacteriorhodopsin's structure, PR has a proline kink in helix C, a non-proline kink in helix G, a short β-turn in the B-C loop, and a short α-helical segment in the E-F loop.  相似文献   

8.
Hypercholesterolemia is a major risk factor for age-related diseases such as atherosclerosis and Alzheimer’s disease (AD). Changes in human plasma cholesterol levels results from the interaction between multiple genetic and environmental factors. The accumulation of excess cholesterol in blood vessels leads to atherosclerosis. Many studies on this field show that differential expression of oxidative stress-related proteins, lipid metabolism-related enzymes, and receptors response to atherogenic diet. Additionally, excess brain cholesterol has been associated with increased formation and deposition of amyloid-β peptide from amyloid precursor protein which may contribute to the risk and pathogenesis of AD. To consider genetically, more than 50 genes have been reported to influence the risk of late-onset AD. Some of these genes might be also important in cholesterol metabolism and transport. Epidemiological studies have shown an association between high intake and high serum concentrations of antioxidant vitamins like vitamin E and lower rates of ischemic heart diseases. It has been known that vitamin E also inhibits smooth muscle cell proliferation by non-antioxidant mechanism. On the basis of the previous results, vitamin E has been accepted as an important protective factor against hypercholesterolemia-induced age-related diseases.  相似文献   

9.
Polymorphisms in the RAS and cardiac function   总被引:3,自引:0,他引:3  
Since the discovery of the polymorphism in the angiotensin converting enzyme (ACE) and the consequences of this polymorphism on the activity levels of the enzyme, numerous association studies have been performed. However, these investigations do not often adhere to the most stringent criteria for such studies. The initial study reporting a positive association of the ACE polymorphism and myocardial infarction showed an increased risk of the DD genotype. This initial association was eventually refuted by a large, well conducted association study, which found a risk ratio of 1.02 after combining their own data with all published data. Although such large, well conducted association studies have not been performed in left ventricular (LV) hypertrophy, the association between DD genotype and hypertrophy is more convincing with a 192% excess risk of LV hypertrophy in untreated hypertensives. The role of ACE genotype in LV growth is well established, especially in athletes. In heart failure, large studies or meta-analyses have not been performed, because most studies have selected different end-points. This hampers a proper meta-analysis of the results obtained in associations with heart failure. As most association studies do not fulfill the criteria for good association studies and use too small sample sizes, it remains important to perform a meta-analysis to add meaning to the results of such studies. Above all, it is important to obey the rules set for association studies, large sample size, small P values, report associations that make biological sense and alleles that affect the gene product in a physiologically meaningful way.  相似文献   

10.
The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.  相似文献   

11.
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.  相似文献   

12.
A new screening procedure is described that uses docking calculations to design enhanced agonist peptides that bind to major histocompatibility complex (MHC) class I receptors. The screening process proceeds via single mutations of one amino acid at the positions that directly interact with the MHC receptor. The energetic and structural effects of these mutations have been studied using fragments of the original ligand that vary in length. The results of these docking studies indicate that the mutant affinity ranking of long peptides can be practically reproduced with a screening approach performed using fragments of six residues. Fragments of four and five residues could mimic, in some cases, the structural arrangement of the side chains of the full-length peptide. We have compared the structural and energetic results of the docking calculations with experimental data using three unrelated ligand peptides that differ greatly in their affinity for the MHC complex. Analysis of the affinity of the fragments led to the identification of three important parameters in the construction of fragments that mimic the structural and energetic properties of the full-length ligand: the length of the fragment; its intermolecular energy; and the number and localization, internal or terminal, of the anchor residues. The results of this new peptide-design methodology have been applied to suggest new peptides derived from the MUC1-8 peptide that could be used as murine vaccines that trigger the immune response through the MHC class I protein H-2K(b).  相似文献   

13.
Colorectal cancer (CRC) is the third most prevalent cancer and fourth leading cause of cancer-related deaths globally. It has been shown that the nsSNP variants play an important role in diseases, however it remained unclear how these variants are associated with the disease. Recently, several CRC risk associated SNPs have been discovered, however rs961253 (Lys25Arg at 20p12.3) located in the proximity of bone morphogenetic protein 2 (Bmp2) and fermitin family homolog 1 Fermt1 genes have been reported to be highly associated with the CRC risk. Here we provide evidence for the first time in silico biological functional and structural implications of non-synonymous (nsSNPs) CRC disease-associated variant Lys25Arg via molecular dynamic (MD) simulation. Protein structural analysis was performed with a particular variant allele (A/C, Lys25Arg) and compared with the predicted native protein structure. Our results showed that this nsSNP will cause changes in the protein structure and as a result is associated with the disease. In addition to the native and mutant 3D structures of CRC associated risk allele protein domain (CRAPD), they were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this study confirmed that this variant has functional effect and structural impact on the CRAPD and may play an important role in CRC disease progression; hence it could be a reasonable approach for studying the effect of other deleterious variants in future studies.  相似文献   

14.
15.
− 866G/A polymorphism in the promoter of UCP2 gene has been reported to be associated with obesity, but the results remain inconclusive. To assess the relation of UCP2 − 866G/A polymorphism and obesity susceptibility, a meta-analysis was performed. PubMed, ISI, Wanfang database, VIP and CBM were searched to identify relevant studies up to July 31, 2012. Odds ratios (OR) and 95% confidence interval (95% CI) were pooled using fixed or random effect models. Subgroup analysis was performed by ethnicity (categorized as Asian and European). Heterogeneity and publication bias evaluation were performed to validate the credibility. Meta-regression and the ‘leave one out’ sensitive analysis were used to explore the potential sources of between-study heterogeneity. 14 studies were included in this meta-analysis. After exclusion of articles that deviated from the HWE in controls, and were the key contributors to between-study heterogeneity, the meta-analysis showed a significant association of the A allele with reduced risk of obesity in overall analysis and in European in the dominant, codominant and additional models. In Asian, no significant association was found between the − 866G/A in UCP2 gene and obesity susceptibility. The meta-analysis suggested that UCP2 − 866G/A polymorphism was associated with obesity. The A allele may be an important protective factor for obesity in European, but not in Asian. Further studies are needed to elucidate the relationship.  相似文献   

16.
Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP‐seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.  相似文献   

17.
血红素氧合酶HugZ是幽门螺旋杆菌(Helicobacter pylori)利用宿主血红素作为铁源的关键蛋白.HugZ的His245残基侧链咪唑基与血红素中心铁配位结合,是酶活中心的重要组成部分.用定点突变的方法构建HugZ突变体H245A、H249A和H245A/H249A基因,并将突变体蛋白表达纯化.通过X射线晶体学途径解析了突变体H245A与血红素复合物的2.55Å分辨率晶体结构.结构解析表明,HugZ的His249残基侧链咪唑基团与血红素的铁原子结合,从而补偿了His245侧链缺失.这种结构特征在已知血红素氧合酶中未曾发现.Val238 ψ平面的可翻转和Gly239的柔性是His249能与血红素配位结合的关键原因,二者的共同作用改变了C端肽链的走向,使Val238与His249之间的柔性回折与α1螺旋的相互作用发生解离,并向远离血红素的方向伸展.HugZ蛋白与血红素结合的光谱实验证明HugZ柔性C端上的组氨酸残基有利于HugZ与血红素的结合.研究结果表明,含多个组氨酸残基柔性C端的存在有利于血红素氧合酶HugZ结合和分解血红素.  相似文献   

18.
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.  相似文献   

19.
肿瘤坏死因子受体超家族 (tumor necrosis factor receptor superfamily, TNFRSF) 是细胞因子受体的一个蛋白质超家族,其显著特征是通过细胞外富含半胱氨酸结构域结合肿瘤坏死因子(tumor necrosis factor,TNF)。肿瘤坏死因子受体(tumor necrosis factor receptors,TNFRs)是古老的细胞因子,TNFRs同源基因最早可追溯到节肢动物果蝇中。TNFRs在炎症反应、细胞凋亡、淋巴细胞稳态和组织发育中发挥重要的作用,TNFRs最主要的功能是与免疫系统相关。鉴于其在免疫系统中发挥重要的作用,肿瘤坏死因子受体家族成员已成为治疗糖尿病、动脉粥样硬化、骨质疏松、自身免疫性疾病、移植排斥反应和癌症等人类疾病的靶点。随着科学技术发展,关于TNFRs的功能有了新的进展,在无脊椎动物和低等脊椎动物中已经有大量报道。在本篇综述中,主要总结了在高等哺乳动物中发现的29种TNFR成员的相关报道,包括8种死亡受体和21种非死亡受体,主要涉及在免疫系统以及与疾病相关领域的研究。大多数研究处于基础实验阶段,少数走向临床研究的案例取得的临床效果并不理想,靶向设计针对自身免疫性疾病、炎症和肿瘤疾病的治疗方案需要更深入的理解TNFRs功能。本文旨在对TNFRs成员发挥的功能有进一步的认识。  相似文献   

20.
肿瘤坏死因子受体超家族 (tumor necrosis factor receptor superfamily, TNFRSF) 是细胞因子受体的一个蛋白质超家族,其显著特征是通过细胞外富含半胱氨酸结构域结合肿瘤坏死因子(tumor necrosis factor,TNF)。肿瘤坏死因子受体(tumor necrosis factor receptors,TNFRs)是古老的细胞因子,TNFRs同源基因最早可追溯到节肢动物果蝇中。TNFRs在炎症反应、细胞凋亡、淋巴细胞稳态和组织发育中发挥重要的作用,TNFRs最主要的功能是与免疫系统相关。鉴于其在免疫系统中发挥重要的作用,肿瘤坏死因子受体家族成员已成为治疗糖尿病、动脉粥样硬化、骨质疏松、自身免疫性疾病、移植排斥反应和癌症等人类疾病的靶点。随着科学技术发展,关于TNFRs的功能有了新的进展,在无脊椎动物和低等脊椎动物中已经有大量报道。在本篇综述中,主要总结了在高等哺乳动物中发现的29种TNFR成员的相关报道,包括8种死亡受体和21种非死亡受体,主要涉及在免疫系统以及与疾病相关领域的研究。大多数研究处于基础实验阶段,少数走向临床研究的案例取得的临床效果并不理想,靶向设计针对自身免疫性疾病、炎症和肿瘤疾病的治疗方案需要更深入的理解TNFRs功能。本文旨在对TNFRs成员发挥的功能有进一步的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号