首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Changes in vascular permeability are associated with structural damage to endothelial cells. These functional and structural changes can be produced experimentally and examined by using intimal explants from bovine pulmonary artery. Correlation of functional with structural changes allows us to dissect the mechanisms responsible for endothelial damage. We have shown that incubation of intimal explants with histamine causes transient formation of interendothelial dilatations and an increased rate of equilibration of tritiated water and [14C]sucrose across the intimal explant. Exposure to endotoxin also causes interendothelial dilatations but the endothelial damage is more severe than that with histamine, and in vivo experiments show a more prolonged increase in pulmonary vascular permeability. Leukocyte migration has also been suggested to result in a decreased barrier function of the endothelial layer. Experiments with the endothelial layer of intimal explants and separated bovine leukocytes suggest that transendothelial migration may depend on the chemotactic stimulus. Neither granulocyte migration toward zymosan-activated plasma nor lymphocyte migration toward lymphocyte-conditioned medium (RPMI in which lymphocytes were incubated with concanavalin A) leads to detectable increases in explant permeability, but granulocyte migration toward lymphocyte-conditioned medium does result in increased equilibration of [14C]sucrose. Finally, a theoretical model has been used to examine the permeability changes seen for the intimal explants exposed to histamine. The model consists of two compartments with radioactive tracers diffusing across a filter of known permeability. Such a model gives good agreement with data obtained in intact sheep, indicating that mathematical models allow quantitative estimates of barrier function in intimal explants that compare favorably with in vivo data.  相似文献   

2.
A single infusion of Escherichia coli endotoxin into sheep results in structural evidence of pulmonary endothelial injury, increases in both prostacyclin and prostaglandin E2 (PGE2) in lung lymph, and an increase in pulmonary microvascular permeability. Endotoxin-induced lung endothelial damage can also be induced in vitro, but to date these studies have utilized endothelium from large pulmonary vessels. In the present study, we have grown endothelial cells from peripheral lung vessels of cows and sheep and exposed these microvascular endothelial cells to endotoxin. Controls included lung microvascular endothelium without endotoxin and endothelial cells from bovine and sheep main pulmonary artery with and without addition of endotoxin. We found that endotoxin caused significant increases in release of prostacyclin and PGE2 from both bovine and sheep lung microvascular and pulmonary artery endothelium. Normal bovine and sheep pulmonary artery and bovine lung microvascular endothelium released greater levels of prostacyclin than PGE2 (ng/ng); release of PGE2 from the microvascular cells was greater than from the pulmonary artery endothelium in both species. Exposure of endothelial cells from cow and sheep main pulmonary artery to endotoxin results in endothelial cell retraction and pyknosis, a loss of barrier function, increased release of prostacyclin and PGE2 and eventual cell lysis. In lung microvascular cells, the increases in prostanoids were accompanied by changes in cell shape but occurred in the absence of either detectable alterations in barrier function or cytolysis. Thus, while endotoxin causes alterations to endothelial cells from both large and small pulmonary vessels, the effects are not identical suggesting site specific phenotypic expression of endothelial cells even within a single vessel. To determine whether the response of either the large or small pulmonary vessel endothelial cells in culture mimics most closely the in vivo response of the lung to endotoxin requires further study.  相似文献   

3.
An intravenous infusion of endotoxin into sheep results in accumulation of equal numbers of lymphocytes and granulocytes in the pulmonary microcirculation. The role of the sequestered lymphocytes in acute lung injury is not known. The present study examines whether lymphocyte migration through pulmonary endothelium contributes to endothelial damage and also examines the effect of lymphokines on granulocyte migration. Bovine pulmonary artery intimal explants were mounted in Boyden chambers and conditioned media, prepared from bovine peripheral blood lymphocytes, was used as the chemoattractant. The rate of 51Cr labelled bovine granulocyte lymphocyte migration into intimal explants was determined over a 3 hr incubation period. Permeability changes were assessed by adding trace amounts of 14C-sucrose and 3H-water to the upper well and following their rate of equilibration with the lower well. 6-Keto-PGF1 alpha was measured in the upper well. Lymphocyte conditioned media was found to be chemotactic for both lymphocytes and granulocytes (lymphocyte migration at 60 min: lymphocyte conditioned media = 18.5 +/- 2.3%, mean +/- s.e. RPMI control = 12.5 +/- 1.5; granulocyte migration at 120 min: conditioned media = 36.1 +/- 5.7, RPMI control = 18.2 +/- 3.0). Ultrastructural examination revealed leukocyte migration followed an orderly sequence during which the leukocytes maintained close contact with the adjacent endothelial cells. No structural evidence of endothelial cell damage was seen at any time examined. Granulocyte migration was associated with an increased rate of 14C-sucrose equilibration after 2 hr of incubation (lower well counts/upper well counts at 2 hr, RPMI control = 0.18 +/- 0.02; lymphocyte conditioned medium = 0.30 +/- 0.04) indicating alteration in the endothelial barrier function. Leukocyte migration, particularly lymphocyte migration, was accompanied by a marked increase in prostacyclin accumulation (3 hr: no leukocytes, 188 +/- 17 ng/ml; lymphocytes, 560 +/- 104). These in vitro findings suggest that lymphocytes and lymphokines may be involved in acute lung injury and also that permeability changes associated with granulocyte migration may depend on the chemoattractant.  相似文献   

4.
Emigration of granulocytes from vessel lumen to a site of injury is a hallmark of acute inflammation but whether this migration is necessarily associated with vascular damage is not clear. To follow the structural changes associated with granulocyte migration across an intact endothelial cell layer and to assess changes in vascular permeability, an in vitro technique was developed in which intimal explants were stripped from bovine pulmonary artery and mounted in chemotaxis chambers. All explants studied had granulocytes and trace amounts of 3H-water, 14C-sucrose and 125I-albumin in the upper well of the chambers. Experimental explants had zymosan-activated plasma in the lower well and control explants had either serum in the lower well or zymosan-activated plasma in the upper well. Explants were incubated at 37 degrees C for periods from 15 min to 3 hr. When the chemoattractant was added to the lower well, granulocytes migrated into the explants. Transmission and scanning electron microscopy showed an orderly sequence of granulocyte--endothelial interactions throughout which the two cell types maintained close opposition--granulocyte adherence to and exploration of the endothelial surface; penetration and migration through the interendothelial cell junction; reapposition and reformation of the luminal 'tight' junctions and finally passage of granulocytes through the endothelial basal lamina. After 60 min incubation, the majority of granulocytes seen in each section was through the endothelial cell layer and after 2 hr, they were through the basal lamina. Structural evidence of granulocyte or endothelial cell damage was not found at any of the times examined, neither was there any demonstrable increase in intimal permeability. In control explants, granulocyte migration was strikingly less frequent at 2 hr (approximately 10% of that seen towards the chemoattractant). Thus, granulocyte migration across an endothelial cell layer towards a chemoattractant is not necessarily associated with structural evidence of endothelial cell injury or increased vascular permeability.  相似文献   

5.
We examined the effect of acute complement activation on lung vascular permeability to proteins in awake sheep prepared with lung lymph fistulas. Complement was activated by cobra venom factor (CVF) infusion (400 U/kg for 1 h iv). Studies were made in two groups of sheep: 1) infusion of CVF containing the endogenous phospholipase A2 (PLA2) (n = 6); and 2) infusion of CVF pretreated with bromophenacyl bromide to inhibit PLA2 activity (n = 5). Intravascular complement activation transiently increased mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) in both groups. Pulmonary lymph flow (Qlym) and lymph protein clearance (Qlym X lymph-to-plasma protein concentration ratio) were also transiently increased in both groups. Pulmonary vascular permeability to proteins was assessed by raising left atrial pressure and determining the lymph-to-plasma protein concentration ratio (L/P) at maximal Qlym. In both groups the L/P at maximal Qlym was not different from normal. In a separate group (n = 4), CVF-induced complement activation was associated with 111In-oxine granulocyte sequestration in the lungs. In vitro plasma from CVF-treated animals aggregated neutrophils but did not stimulate neutrophils to produce superoxide anion generation. Therefore, CVF-induced complement activation results in pulmonary neutrophil sequestration and in increases in PVR and lymph protein clearance. The increase in lymph protein clearance is due to increased pulmonary microvascular pressure and not increased vascular permeability to proteins.  相似文献   

6.
Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.  相似文献   

7.
Endotoxin causes pulmonary vascular neutrophil sequestration and injures the lung. Whether this is primarily due to a direct effect of endotoxin on the endothelium or is mediated by an action on the neutrophil is unclear. Canine neutrophils, isolated on plasma-Percoll gradients in vitro, were incubated with Salmonella enteriditis endotoxin, washed, and injected via wedged pulmonary arterial catheters into discrete lung zones of anesthetized dogs, whereas untreated neutrophils were administered into contralateral control lung zones. 113mIn-transferrin was administered intravenously 2 h before the animals were killed. Morphometry and extravascular protein accumulation were assessed at 4 h. Endotoxin treatment of neutrophils ex vivo induced a two- to three-fold increase in neutrophils in these lung zones (0.096 +/- 0.012 vs. 0.05 +/- 0.002 neutrophils/alveolar septal intercept, P less than 0.05). Extravascular-to-intravascular protein ratios in zones receiving endotoxin-treated neutrophils were significantly increased compared with control zones (0.146 +/- 0.02 vs. 0.079 +/- 0.02, P less than 0.05). Because complement fragments increase injury to endothelium in vitro, exogenous C5 fragments were administered to other dogs before administration of neutrophils but failed to significantly increase the extravascular protein signal (0.154 +/- 0.03 vs. 0.124 +/- 0.04). In summary, endotoxin treatment of neutrophils leads to neutrophil sequestration and increased pulmonary extravascular protein accumulation. C5 fragments failed to further enhance the protein accumulation. These data are consistent with an effect of endotoxin on the neutrophil to initiate neutrophil-endothelial interaction and subsequent lung injury.  相似文献   

8.
Platelet-activating factor increases lung vascular permeability to protein   总被引:2,自引:0,他引:2  
We studied the effects of platelet-activating factor (PAF) on pulmonary hemodynamics and microvascular permeability in unanesthetized sheep prepared with lung-lymph fistulas. Since cyclooxygenase metabolites have been implicated in mediating these responses, we also examined the role of the cyclooxygenase pathway. PAF infusion (4 micrograms X kg-1 X h-1 for 3 h) produced a rapid, transient rise in pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), plasma thromboxane B2 concentration (TxB2), and pulmonary lymph flow (Qlym). The lymph-to-plasma protein concentration ratio (L/P) did not change from base line. Pretreatment with the cyclooxygenase inhibitor, sodium meclofenamate, prevented the generation of TxB2 and the hemodynamic changes but did not prevent the increase in Qlym. The estimated protein reflection coefficient decreased from a control value of 0.66 +/- 0.04 to 0.43 +/- 0.06 after PAF infusion. We also studied the effects of PAF on endothelial permeability in vitro by measuring the flux of 125I-albumin across cultured bovine pulmonary artery endothelial cells (EC) grown to confluency on a gelatinized micropore filter and mounted within a modified Boyden chemotaxis chamber. PAF (10(-8) to 10(-4) M) had no direct effect on EC albumin permeability, suggesting that the increase in permeability in sheep was not the direct lytic effect of PAF. In conclusion, PAF produces pulmonary vasoconstriction mediated by cyclooxygenase metabolites. PAF also increases pulmonary vascular permeability to protein that is independent of cyclooxygenase products and is not the result of a direct effect of PAF on the endothelium.  相似文献   

9.
Administration of lymphokine-activated killer (LAK) cells in combination with interleukin 2 (IL-2) has been effective in reducing tumor mass in humans, but has been accompanied by significant toxicity. We used a chronic awake sheep model to investigate the cause of the vascular leak syndrome associated with IL-2 administration. Sheep repeatedly infused with human recombinant IL-2 (hrIL-2) developed mild pulmonary hypertension, systemic hypotension, acidemia, hypoxemia, and increased flow of protein rich lung lymph. We hypothesized that LAK cells may damage lung endothelium in vivo and cause increased lung vascular permeability. Sheep peripheral blood and lung lymph lymphocytes incubated in vitro with hrIL-2 generated cytotoxic activity for human K-562 cells and sheep pulmonary microvascular endothelial cells. In addition, cytotoxic effector cells were isolated from the peripheral blood of a sheep which had received hrIL-2. These observations suggest that LAK cells possess the ability to damage endothelial cells and may contribute to an increased pulmonary vascular permeability observed following hrIL-2 infusion in sheep.  相似文献   

10.
Endothelial monolayer permeability to macromolecules   总被引:9,自引:0,他引:9  
The barrier function of the endothelial monolayer has not been extensively investigated using the cultured endothelium. The in vitro approach may contribute to a more complete understanding of microvessel wall permeability. Our studies using an in vitro endothelial monolayer system have led us to the following conclusions: the endothelial monolayer is more permeable to small-molecular-weight substances than to large molecules; the permeability of albumin is different for endothelial cells derived from different vascular sites (higher for pulmonary venous than pulmonary arterial endothelium); basement membrane components may have a significant role in the permeability of albumin across the endothelium; control of endothelial monolayer permeability is determined not only by the characteristics of the macromolecule (i.e., size and charge) but also by the shape of the endothelial cells and the size of interendothelial space.  相似文献   

11.
During an inflammatory response induced by infection or injury, leukocytes traverse the endothelial barrier into the tissue space. Extravasation of leukocytes is a multistep process involving rolling, tethering, firm adhesion to the endothelium, and finally, transendothelial migration, the least characterized step in the process. The resting endothelium is normally impermeable to leukocytes; thus, during inflammation, intracellular signals that modulate endothelial permeability are activated to facilitate the paracellular passage of leukocytes. Using a static in vitro assay of neutrophil transmigration across human umbilical vein endothelium, a panel of inhibitors of intracellular signaling was screened for their ability to inhibit transmigration. PD98059, a specific inhibitor of extracellular signal-regulated kinase (ERK) 1/2 activation, inhibited both transmigration across TNF-alpha-activated endothelium and transmigration induced by the chemoattractant fMLP in a dose-dependent manner. PD98059 did not inhibit neutrophil chemotaxis in the absence of an endothelial barrier nor neutrophil adhesion to the endothelium, suggesting that its effect was on the endothelium, and furthermore, that endothelial ERK activation may be important for transmigration. We demonstrate in this study that endothelial ERK is indeed activated during neutrophil transmigration and that its activation is dependent on the addition of neutrophils to the endothelium. Further characterization showed that the trigger for endothelial ERK activation is a soluble protein of molecular mass approximately 30 kDa released from neutrophils after activation.  相似文献   

12.
Atrial natriuretic peptide (ANP) has been shown to reduce hypoxia-induced pulmonary vascular leak in vivo, but no explanation of a mechanism has been offered other than its vasodilatory and natriuretic actions. Recently, data have shown that ANP can protect endothelial barrier functions in TNF-alpha-stimulated human umbilical vein endothelial cells. Therefore, we hypothesized that ANP actions would inhibit pulmonary vascular leak by inhibition of TNF-alpha secretion and F-actin formation. Bovine pulmonary microvascular (MVEC) and macrovascular endothelial cell (LEC) monolayers were stimulated with hypoxia, TNF-alpha, or bacterial endotoxin (LPS) in the presence or absence of ANP, and albumin flux, NF-kappa B activation, TNF-alpha secretion, p38 mitogen-activated protein kinase (MAPK), and F-actin (stress fiber) formation were assessed. In Transwell cultures, ANP reduced hypoxia-induced permeability in MVEC and TNF-alpha-induced permeability in MVEC and LEC. ANP inhibited hypoxia and LPS increased NF-kappa B activation and TNF-alpha synthesis in MVEC and LEC. Hypoxia decreased activation of p38 MAPK in MVEC but increased activation of p38 MAPK and stress fiber formation in LEC; TNF-alpha had the opposite effect. ANP inhibited an activation of p38 MAPK in MVEC or LEC. These data indicate that in endothelial cell monolayers, hypoxia activates a signal cascade analogous to that initiated by inflammatory agents, and ANP has a direct cytoprotective effect on the pulmonary endothelium other than its vasodilatory and natriuretic properties. Furthermore, our data show that MVEC and LEC respond differently to hypoxia, TNF-alpha-stimulation, and ANP treatment.  相似文献   

13.
In vitro studies suggest intact endothelial cells and their released growth factors are required for optimal growth and differentiation of hematopoietic cells in culture. Conversely, processes that damage endothelium might, therefore, suppress hematopoiesis. We have studied mechanisms by which stimulated inflammatory cells, particularly granulocytes, damage endothelium and suggest these studies may provide new insights into the hematopoietic suppression of inflammatory diseases. We demonstrate that the granulocyte lysosomal constituent, lactoferrin, which has independently been shown to inhibit in-vitro hematopoiesis, may act by amplifying granulocyte-mediated toxic oxidant damage to endothelium. Its deleterious effects are twofold: 1) it releases iron that catalyses the Haber-Weiss reaction, thereby producing highly toxic hydroxyl radicals; and 2) its highly positive charge facilitates its absorption to target membranes that traffics oxygen-radical damage directly to endothelium. In addition, we demonstrate that another granulocyte lysosomal component, elastase, also perturbs endothelium--not so much by direct lytic effect, but by proteolysing matrix proteins that serve to attach endothelium to its substratum. Thus, elastase promotes endothelial lift-off. Plasma alpha-1-antiproteinase, a potent antielastase, should be protective, but is inactivated by the same granulocyte oxidants that directly lyse endothelial cells. However, antielastase activity can be preserved by antioxidants and a novel, innocuous one--methionine--is described. It is oxidized as a surrogate for the critical-site methionine of alpha-1-proteinase inhibitor, preserving in the process antielastase activity. Our results suggest that strategies to reduce production of inflammatory cell toxic oxygen radicals with reagents such as antilactoferrin antibody or iron chelators might be useful adjuncts in maintaining in vitro hematopoiesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In vivo models of airway inflammation suggest that most protein transudation occurs from bronchial microcirculation. However, due to technical limitations in the isolation and culture of bronchial endothelial cells, most studies of lung vascular permeability have focused on pulmonary endothelium. Thus conditions for culture of sheep bronchial artery endothelial cells (BAEC) and bronchial microvascular endothelial cells (BMVEC) were established. The bronchial artery and the mainstem bronchi, stripped of epithelium, were dissected, and endothelial cells were isolated by enzymatic treatment. BAEC and BMVEC demonstrated positive staining for factor VIII-related antigen, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled low-density lipoprotein, and PECAM-1. Radioligand binding studies confirmed equivalent numbers of bradykinin B(2) receptors on BAEC and BMVEC. Permeability of BAEC and BMVEC was determined after treatment with bradykinin and thrombin by comparing the translocation of FITC-dextran (mol wt 9,500) across confluent monolayers (n = 10-12). Bradykinin caused a maximal increase in permeability in BAEC (165% increase) and BMVEC (144% increase) by 15 min compared with vehicle controls. Thrombin treatment altered BMVEC permeability only, reaching a maximal response at 60 min (109% increase). These results demonstrate bronchial endothelial cell heterogeneity and establish methods to determine intracellular mechanisms contributing to airway disease in relevant cell systems.  相似文献   

15.
Angiopoietin-1 (Ang-1), a ligand of the endothelium-specific receptor Tie-2, inhibits permeability in the mature vasculature, but the mechanism remains unknown. Here we show that Ang-1 signals Rho family GTPases to organize the cytoskeleton into a junction-fortifying arrangement that enhances the permeability barrier function of the endothelium. Ang-1 phosphorylates Tie-2 and its downstream effector phosphatidylinositol 3-kinase. This induces activation of one endogenous GTPase, Rac1, and inhibition of another, RhoA. Loss of either part of this dual effect abrogates the cytoskeletal and anti-permeability actions of Ang-1, suggesting that coordinated GTPase regulation is necessary for the vessel-sealing effects of Ang-1. p190 RhoGAP, a GTPase regulatory protein, provides this coordinating function as it is phosphorylated by Ang-1 treatment, requires Rac1 activation, and is necessary for RhoA inhibition. Ang-1 prevents the cytoskeletal and pro-permeability effects of endotoxin but requires p190 RhoGAP to do so. Treatment with p190 RhoGAP small interfering RNA completely abolishes the ability of Ang-1 to rescue endotoxemia-induced pulmonary vascular leak and inflammation in mice. We conclude that Ang-1 prevents vascular permeability by regulating the endothelial cytoskeleton through coordinated and opposite effects on the Rho GTPases Rac1 and RhoA. By linking Rac1 activation and RhoA inhibition, p190 RhoGAP is critical to the protective effects of Ang-1 against endotoxin. These results provide mechanistic evidence that targeting the endothelium through Tie-2 may offer specific therapeutic strategies in life-threatening endotoxemic conditions such as sepsis and acute respiratory distress syndrome.  相似文献   

16.
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza.  相似文献   

17.
The blood-borne, erythrocyte-aggregating Borrelia crocidurae , the causative agent of African relapsing fever, have been shown to induce severe cellular lesions in mice. In this paper, we present the first report of how the endothelium is stimulated during an African relapsing fever B. crocidurae infection. B. crocidurae co-incubated with cultured human umbilical vein endothelial cells (HUVECs) activated endothelium in such way that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose- and time-dependent fashion, as determined by a whole-cell enzyme-linked immunosorbent assay (ELISA). The upregulation was reduced by treatment that killed the bacteria, suggesting that viability is important for the stimulation of HUVECs by B. crocidurae . Furthermore, conditioned medium from HUVECs stimulated with B. crocidurae contained interleukin (IL)-8, which is a chemotactic agent for neutrophils. Activation of HUVECs by B. crocidurae resulted in migration of subsequently added neutrophils across the endothelial monolayers, and this migration was inhibited by antibodies to IL-8. The activation of endothelium by B. crocidurae may constitute a key pathophysiological mechanism in B. crocidurae -induced vascular damage.  相似文献   

18.
Systemic complement activation and acute lung injury   总被引:2,自引:0,他引:2  
Experimental studies of rats have provided significant evidence that intravascular complement activation after i.v. injection of cobra venom factor (CVF) or thermal injury of skin can result in acute lung injury. This has been determined by morphological changes in lung and increases in lung vascular permeability. Systemic complement activation is associated with an early appearance of C5-derived chemotactic activity in the circulation coincident with the development of transient neutropenia, followed by extensive granulocytosis and sequestration of neutrophils in lung interstitial capillaries. The acute pulmonary injury depends on availability of complement and neutrophils. Depletion of either complement or blood neutrophils before CVF injection or thermal injury will prevent development of lung injury. Interventional studies with catalase, scavengers of hydroxyl radical OH., and iron chelators have revealed that the acute pulmonary injury is related to production of oxygen-derived free radicals by activated neutrophils. OH. appears to be the key mediator involved in the acute lung microvascular injury.  相似文献   

19.
Under inflammatory conditions (including HIV-1 encephalitis and multiple sclerosis), activated brain endothelium enhances the adhesion and transmigration of monocytes across the blood-brain barrier (BBB). Synthetic ligands that activate the peroxisome proliferator-activated receptors (PPARs) have anti-inflammatory properties, and PPAR stimulation prevents the interaction of leukocytes with cytokine stimulated-endothelium. However, the mechanism underlying these effects of PPAR ligands and their ability to intervene with leukocyte adhesion and migration across brain endothelial cells has yet to be explored. For the first time, using primary human brain endothelial cells (BMVEC), we demonstrated that monocyte adhesion and transendothelial migration across inflamed endothelium were markedly reduced by PPARgamma activation. In contrast to non-brain-derived endothelial cells, PPARalpha activation in the BMVEC had no significant effect on monocyte-endothelial interaction. Previously, our work indicated a critical role of Rho GTPases (like RhoA) in BMVEC to control migration of HIV-1 infected monocytes across BBB. In this study, we show that in the BMVEC PPARgamma stimulation prevented activation of two GTPases, Rac1 and RhoA, which correlated with decreased monocyte adhesion to and migration across brain endothelium. Relevant to HIV-1 neuropathogenesis, enhanced adhesion and migration of HIV-1 infected monocytes across the BBB were significantly reduced when BMVEC were treated with PPARgamma agonist. These findings indicate that Rac1 and RhoA inhibition by PPARgamma agonists could be a new approach for treatment of neuroinflammation by preventing monocyte migration across the BBB.  相似文献   

20.
The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34(+) cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhesion increases the permeability of monolayers of human bone marrow endothelial cells (HBMECs) and stimulates the transendothelial migration of CD34(+) cells in response to stromal cell-derived factor-1alpha. Stromal cell-derived factor-1alpha-induced migration was dependent on VCAM-1 and ICAM-1, even in the absence of VE-cadherin function. Cross-linking of ICAM-1 to mimic the leukocyte-endothelium interaction induced actin stress fiber formation but did not induce loss of endothelial integrity, whereas cross-linking of VCAM-1 increased the HBMEC permeability and induced gaps in the monolayer. In addition, VCAM-1-mediated gap formation in HBMEC was accompanied by and dependent on the production of reactive oxygen species. These data suggest that modulation of VE-cadherin function directly affects the efficiency of transendothelial migration of CD34(+) cells and that activation of ICAM-1 and, in particular, VCAM-1 plays an important role in this process through reorganization of the endothelial actin cytoskeleton and by modulating the integrity of the bone marrow endothelium through the production of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号