共查询到20条相似文献,搜索用时 11 毫秒
1.
It is known that Myxobolus cerebralis antigens, both surficial and secreted, are key modulators for, or targets of, host immune system compounds. We undertook SDS-PAGE glycoprotein characterisation of M. cerebralis developmental stages isolated from infected rainbow trout and Western blot analyses using selected biotin-labelled plant lectins (GSA-I, PHA-E, SJA, GSA-II) and anti-triactinomyxon polyclonal antibodies. Glycoproteins were isolated with lectin-affinity chromatography, and prominent bands were characterised by matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI/MS). We identified glycoproteins of M. cerebralis myxospores that contained carbohydrate motifs reactive with Phaseolus vulgaris erythroagglutinin (proteins 20 to 209 kDa, PHA-E), Sophora japonica agglutinin (proteins 7 to 70 kDa, SJA), Griffonia simplicifolia Agglutinin I (proteins 10 to 209 kDa, GSA-I) and G. simplicifolia Agglutinin II (proteins 5 to 40 kDa, GSA-II). Mcgp33, a glycoprotein isolated by lectin-affinity chromatography, was reactive with SJA (about 33 kDa). Antiserum produced against M. cerebralis triactinomyxons was found to have differences in the antigenicity of isolated glycoproteins from both M. cerebralis myxospores and actinospores. We also demonstrated modified antigen expression, especially involving the glycoprotein Mcgp33, in different developmental stages of M. cerebralis. 相似文献
2.
The objective of this study was to quantify and determine the periodicity in the release of the triactinomyxon (TAM) stage of Myxobolus cerebralis, the causative agent of salmonid whirling disease, by its aquatic oligochaete host Tubifex tubifex. For this, 24 individual T. tubifex (infected as a group at 15 C) were examined daily for the release of M. cerebralis TAMs, and the number of waterborne TAMs released by each worm was quantified. The duration of the infection in these worms was also monitored using a polymerase chain reaction (PCR) diagnostic test. TAMs were first released 74 days postexposure (PE) and continued to be released until 132 days PE. During this period, each worm released on average, 1.5 x 10(3) waterborne TAMs 12 times; however, no pattern or periodicity was noted. The results of the PCR diagnostic tests conducted at 5, 7, 9, and 15 mo PE were positive, and the persistent infection was confirmed at 606 days PE (approximately 20 mo) when the remaining worms began releasing TAMs again. Similar results were observed in naturally infected T. tubifex, indicating that these worms remain infected for the duration of their natural lifespan and are capable of shedding viable TAMs, in temporally separate periods. These findings open the possibility of a seasonal periodicity in TAM release by T. tubifex. 相似文献
3.
Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis, remains a health threat to salmonid fish in the western United States. Although various aspects of this host-parasite system have been studied, investigations examining the overall epizootiology of whirling disease in an ecosystem are lacking. Therefore, in June 1998, studies were initiated in the Rock Creek watershed of west-central Montana and continued through 2003 to assess the intensity of infection in trout using sentinel cages stationed throughout the drainage. Additional studies determined the percentage of the annelid worm, Tubifex tubifex, releasing M. cerebralis at various localities in Rock Creek and whether there was a seasonal or daily periodicity in the release of the triactinomyxon stage of the parasite from T. tubifex. Lastly, habitat and water quality parameters, and the effects of habitat restoration on transmission of M. cerebralis, were assessed. Overall, the intensity of M. cerebralis infections in sentinel trout increased significantly throughout the drainage between June of 1998 and 2003, with the biggest jump occurring between 1998 and 1999. In addition, the range of M. cerebralis expanded considerably over the period of study. There was no strict correlation between habitat condition and the occurrence of the parasite; fish became heavily infected in optimal and marginal habitats. However, fish exposed at a locality that had the lowest habitat ranking consistently had the highest intensity of infection. The parasite has apparently caused a dramatic decline in rainbow trout densities, but the brown trout population numbers have increased, and the overall fish density remains high. Although a major habitat restoration project did not seem to have an effect on decreasing disease intensity, this was not surprising because the restored area was located just downstream from a "hotspot" of infected T. tubifex. 相似文献
4.
Oligochaetes, triactinomyxons (TAMs), and age-0 trout were sampled in the upper Cache la Poudre River, Colorado, to determine the distribution of Myxobolus cerebralis during 1997 and 1998. Densities of the intermediate host, the oligochaete Tubifex tubifex, were 3.5 orders of magnitude higher in the M. cerebralis-infected Poudre Rearing Unit (PRU) trout rearing ponds than at any of the river sampling reaches. Oligochaetes, including T. tubifex, were rare in the river (1 oligochaete m(-2)), except in a few stream side alcoves and eddies (50 oligochaete m(-2)). Species composition of oligochaetes in the river reaches was more diverse than in the PRU. Tubifex tubifex constituted 50% or less of the oligochaete community in the river and 98% in the PRU. Infection rates of T tubifex were 1% in the area above the PRU, 2% in the PRU, and 6% below the PRU. An increased M. cerebralis intensity of infection in age-0 trout below the PRU could not be attributed entirely to the high numbers of TAMs in its effluent (3.7 TAMs l(-1)). Low densities of TAMs ranging from 0 to 0.2 TAMs l(-1) were found in the river reaches, yet nearly all of the age-0 trout were infected soon after emergence. This suggests that very few TAMs, as measured by filtration, need be present in the water column to bring about infection in the majority of trout present. This also indicates that the parasite can persist and potentially cause reduced juvenile trout recruitment in cold, oligotrophic, sediment poor, high-gradient streams. 相似文献
5.
Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity. 相似文献
6.
7.
Hedrick RP McDowell TS Marty GD Fosgate GT Mukkatira K Myklebust K El-Matbouli M 《Diseases of aquatic organisms》2003,55(1):37-44
The susceptibility of 2 strains of rainbow trout Oncorhynchus mykiss, 1 from North America (TL) and 1 from Germany (GR), to Myxobolus cerebralis (the cause of salmonid whirling disease) was assessed following exposure to the infectious stages (triactinomyxons). Two laboratory experiments were conducted with age-matched rainbow trout of each strain. At the beginning of the study, the 2 trout strains were aged ca. 570 degree-days in Expt 1, and ca. 999 degree-days in Expt 2. In both experiments, replicate groups of each trout strain were exposed to 10, 100, 1000 or 10000 triactinomyxons (TAMs) fish(-1) for 2 h. The fish were then held in aquaria receiving 15 degrees C well-water. Severity of infection was evaluated 5 mo after exposure by presence of clinical signs (whirling and/or black tail), prevalence of infection, severity of microscopic lesions, and spore counts. Clinical signs of whirling disease were evident only in the younger fish exposed in Expt 1: These occurred first among TL rainbow trout at the highest dose at 6 to 7 wk post exposure and then 2 wk later in fish at the 1000 TAMs dose. Black tail was also observed among GR rainbow trout at the 10000 TAMs dose only, but in fewer fish. The prevalence of infection, spore numbers, and severity of microscopic lesions due to M. cerebralis among GR rainbow trout were less at all doses compared to TL rainbow trout. Risk of infection analyses showed that TL rainbow trout were more prone to infection at the lower doses than GR trout. Mean spore counts were consistently (10- to 100-fold) less in GR than TL trout at doses of 1000 TAMs or lower. Microscopic lesions increased with increasing dose in both strains of rainbow trout. The mechanisms underlying the greater resistance of the GR strain to M. cerebralis infections are unknown, but are under investigation as part of a long-term project to determine the basis for resistance and susceptibility of salmonid fishes to whirling disease. 相似文献
8.
The biology of Myxosoma cerebralis: the causative organism of whirling disease of salmonids 总被引:1,自引:0,他引:1
M. M. Halliday 《Journal of fish biology》1976,9(4):339-357
The literature describing the biology and control of Myxosoma cerebralis (whirling disease) is reviewed. New data on the world distribution of the parasite are presented. It is concluded that the presence of M. cerebralis is not an important limiting factor in salmonid fanning per se but only limits methods of production. 相似文献
9.
10.
Understanding the genetic structure of parasite populations on the natural landscape can reveal important aspects of disease ecology and epidemiology and can indicate parasite dispersal across the landscape. Myxobolus cerebralis (Myxozoa: Myxosporea), the causative agent of whirling disease in the definitive host Tubifex tubifex, is native to Eurasia and has spread to more than 25 states in the USA. The small amounts of data available to date suggest that M. cerebralis has little genetic variability. We examined the genetic variability of parasites infecting the definitive host T. tubifex in the Madison River, MT, and also from other parts of North America and Europe. We cloned and sequenced 18S ribosomal DNA and the internal transcribed spacer-1 (ITS-1) gene. Five oligochaetes were examined for 18S and five for ITS-1, only one individual was examined for both genes. We found two different 18S rRNA haplotypes of M. cerebralis from five worms and both intra- and interworm genetic variation for ITS-1, which showed 16 different haplotypes from among 20 clones. Comparison of our sequences with those from other studies revealed M. cerebralis from MT was similar to the parasite collected from Alaska, Oregon, California, and Virginia in the USA and from Munich, Germany, based on 18S, whereas parasite sequences from West Virginia were very different. Combined with the high haplotype diversity of ITS-1 and uniqueness of ITS-1 haplotypes, our results show that M. cerebralis is more variable than previously thought and raises the possibility of multiple introductions of the parasite into North America. 相似文献
11.
Gang Yu Jin-Liang Liu Li-Qin Xie Xue-Liang Wang Shi-Hong Zhang Hong-Yu Pan 《Journal of microbiology (Seoul, Korea)》2012,50(6):939-946
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg2+ and Ca2+ concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme. 相似文献
12.
This study reports the first serine protease gene(s) isolated from Perkinsus marinus. Using universal primers, a 518 bp subtilisin-like serine protease gene fragment was amplified from P. marinus genomic DNA and used as a probe to screen a lambda-phage P. marinus genomic library; 2 different lambda-phage clones hybridized to the digoxigenin(DIG)-labeled subtilisin-like gene fragment. Following subcloning and sequencing of the larger DNA fragment, a 1254 bp open reading frame was identified and later confirmed, by 5' and 3' random amplification of cDNA ends (RACE) and northern blot analysis, to contain the entire coding-region sequence. Sequence analysis of the 3' RACE results from 2 isolate cultures, VA-2 (P-1) and LA 10-1, revealed multiple polymorphic sites within and among isolates. We identified 2 different types of cDNA clones with 95.53% nucleotide sequence similarity, suggesting the possibility of 2 closely related genes within the P. marinus genome. Southern blot analysis of genomic DNA from 12 genetically distinct P. marinus isolate cultures revealed 2 different banding patterns among isolates. 相似文献
13.
Molecular characterization of fervidolysin,a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans 总被引:5,自引:0,他引:5
Kluskens LD Voorhorst WG Siezen RJ Schwerdtfeger RM Antranikian G van der Oost J de Vos WM 《Extremophiles : life under extreme conditions》2002,6(3):185-194
The fls gene encoding fervidolysin, a keratin-degrading proteolytic enzyme from the thermophilic bacterium Fervidobacterium pennivorans, was isolated using degenerate primers combined with Southern hybridization and inverse polymerase chain reaction. Further sequence characterization demonstrated that the 2.1-kb fls gene encoded a 699-amino-acid preproenzyme showing high homology with the subtilisin family of the serine proteases. It was cloned into a pET9d vector, without its signal sequence, and expressed in Escherichia coli. The heterologously produced fervidolysin was purified by heat incubation followed by ion exchange chromatography and emerged in the soluble fraction as three distinct protein bands, as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal-sequence analysis of these bands and their comparison with that determined from biochemically purified keratinase and its predicted protein sequence, identified them as a 73-kDa fervidolysin precursor, a 58-kDa mature fervidolysin, and a 14-kDa fervidolysin propeptide. Using site-directed mutagenesis, the active-site histidine residue at position 79 was replaced by an alanine residue. The resulting fervidolysin showed a single protein band corresponding in size to the 73-kDa fervidolysin precursor, indicating that its proteolytic cleavage resulted from an autoproteolytic process. Knowledge-based modeling experiments showed a distinctive binding region for subtilases, in which binding of the propeptide could take place prior to autoproteolysis. Assays using keratin and other proteinaceous substrates did not display fervidolysin activity, perhaps because of the tight binding of the propeptide in the substrate-binding site, where it could then function as an inhibitor. 相似文献
14.
Methylene blue staining (0.08 %) was used to determine efficiency of heat treatment in killing spores of Myxosoma cerebralis . Nearly all spores heated at 90°C for 10 min and 70°C for 100 min became stained giving presumptive evidence that they were killed. 相似文献
15.
16.
Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is a protein belonging to the subtilisin-like superfamily of serine proteases (subtilases). PfSUB-1 undergoes extensive posttranslational proteolytic processing. The primary translation product is converted in the parasite endoplasmic reticulum to p54. This is further processed to p47, which accumulates in secretory organelles within the merozoite. Here, we present a detailed study of this processing. In vitro translated PfSUB-1 showed no capacity to undergo autocatalytic processing. However, parasite extracts contain a protease that cleaves the in vitro translated proprotein between Asp(219) and Asn(220) to form two products of 31 (p31) and 54 kDa; the latter was indistinguishable from authentic p54 and remained complexed with p31 in a noncovalent interaction characteristic of that between a subtilase prodomain and its cognate catalytic domain. Cross-linking studies showed that this complex also exists in the parasite. Expression of PfSUB-1 in recombinant baculovirus also resulted in processing to p54. Mutation of the predicted active site serine abolished processing. Recombinant p54 was secreted in a complex with p31, and could be further converted to p47 in vitro. Conversion required calcium, was an intramolecular autocatalytic process, and involved a second cleavage between Asp(251) and Ala(252). A decapeptide based on sequence flanking Asp(219) was efficiently cleaved by recombinant PfSUB-1. We conclude that PfSUB-1 is a subtilase with an unusual substrate specificity and that it is activated by two autocatalytic processing steps. 相似文献
17.
R P Hedrick T S McDowell M Gay G D Marty M P Georgiadis E MacConnell 《Diseases of aquatic organisms》1999,37(3):173-183
The susceptibility of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease, was assessed following dosed exposures to the infectious stages (triactinomyxons). Parallel groups of age-matched brown trout and rainbow trout were exposed to 10, 100, 1000 or 10,000 triactinomyxons per fish for 2 h and then placed in aquaria receiving single pass 15 degrees C well water. Severity of infection was evaluated by presence of clinical signs (whirling and/or black tail), prevalence of infection, severity of microscopic lesions, and spore counts 5 mo after exposure. Clinical signs of whirling disease, including a darkened caudal region (black tail) and radical tail chasing swimming (whirling), occurred first among rainbow trout at the highest dose at 6 to 7 wk post exposure. Black tail and whirling occurred among rainbow trout receiving 1000 and 100 triactinomyxons per fish at 8 to 9 wk post exposure. Only 1 of 20 fish had a black tail among rainbow trout receiving 10 triactinomyxons per fish, although 30% of the fish were infected at 5 mo post exposure. Black tails were observed in brown trout at 1000 and 10,000 triactinomyxons per fish beginning at 11 and 7 wk post exposure, respectively. There was no evidence of the tail chasing swimming (whirling) in any group of brown trout. The prevalence of infection, spore numbers, and severity of microscopic lesions due to M. cerebralis among brown trout were less at each exposure dose when compared to rainbow trout. Infections were found among rainbow trout at all doses of exposure but only among brown trout exposed to doses of 100 triactinomyxons per fish or greater. Risk of infection analyses showed that rainbow trout were more apt to be infected at each exposure dose than brown trout. Spore counts reached 1.7 x 10(6) per head among rainbow trout at the highest dose of exposure compared to 1.7 x 10(4) at the same exposure dose among brown trout. Spore numbers increased with dose of exposure in rainbow trout but not in brown trout. As microscopic lesion scores increased from mild to moderate, spore numbers increased in rainbow trout but not brown trout. The mechanisms by which brown trout resist infections with M. cerebralis were not determined. Cellular immune functions, including those of eosinophilic granular leukocytes that were more prominent in brown trout than rainbow trout, may be involved. 相似文献
18.
19.
Takeshi Kuroha Asako Okuda Masahiro Arai Yuta Komatsu Shusei Sato Tomohiko Kato Satoshi Tabata Shinobu Satoh 《Physiologia plantarum》2009,137(3):281-288
Xylem plays a role not only in the transport of water and nutrients but also in the regulation of growth and development through the transport of biologically active substances. In addition to mineral salts, xylem sap contains hormones, organic nutrients and proteins. However, the physiological functions of most of those substances remain unclear. To explore genes involved in xylem sap production, we identified Arabidopsis genes expressed in the root stele of the root hair zone from gene-trap lines by randomly inserting the β-glucuronidase gene into the genome. Among 26 000 gene-trap lines, we found that 10 lines had β-glucuronidase (GUS) staining predominantly in the root stele of the root hair zone and no GUS staining in the shoots. Of these 10 lines, 2 lines showed that gene-trap tags inserted into the promoter region of the same gene, denoted Arabidopsis thaliana subtilase 4.12( AtSBT4.12 ). Analysis of AtSBT4.12 promoter using an pAtSBT4.12 ::β-glucuronidase transgenic line showed that the AtSBT4.12 gene was expressed only in the root stele of the root hair zone. AtSBT4.12 expression in roots was increased by application of methyl jasmonate. Subtilase proteins are commonly detected in proteomic analyses of xylem sap from various plant species, including Brassica napus , a relative of Arabidopsis . These results suggest that AtSBT4.12 may be a protein localized in the apoplast of root stele including xylem vessel and involved in stress responses in Arabidopsis roots. 相似文献
20.
Hedrick RP McDowell TS Adkison MA Myklebust KA Mardones FO Petri B 《International journal for parasitology》2012,42(7):657-666
Myxobolus cerebralis is a microscopic metazoan parasite (Phylum Myxozoa: Myxosporea) associated with salmonid whirling disease. There are currently no vaccines to minimise the serious negative economical and ecological impacts of whirling disease among populations of salmonid fish worldwide. UV irradiation has been shown to effectively inactivate the waterborne infective stages or triactinomyxons of M. cerbralis in experimental and hatchery settings but the mechanisms by which the parasite is compromised are unknown. Treatments of triactinomyxons with UV irradiation at doses from 10 to 80 mJ/cm(2) either prevented (20-80 mJ/cm(2)) or significantly inhibited (10 mJ/cm(2)) completion of the parasite life cycle in experimentally exposed juvenile rainbow trout (Oncorhynchus mykiss). However, even the highest doses of UV irradiation examined (80 mJ/cm(2)) did not prevent key steps in the initiation of parasite infection, including attachment and penetration of the epidermis of juvenile rainbow trout as demonstrated by scanning electron and light microscopy. Furthermore, replication of UV-treated parasites within the first 24h following invasion of the caudal fin was suggested by the detection of concentrations of parasite DNA by quantitative PCR comparable to that among fish exposed to an equal concentration of untreated triactinomyxons. Subsequent development of parasites treated with an 80 mJ/cm(2) dose of UV irradiation however, was impaired as demonstrated by the decline and then lack of detection of parasite DNA; a trend beginning at 10 days and continuing thereafter until the end of the study at 46 days post parasite exposure. Treatments of triactinomyxons with a lower dose of UV irradiation (20 mJ/cm(2)) resulted in a more prolonged survival with parasite DNA detected, although at very low concentrations, in fish up to 49 days post parasite exposure. The successful invasion but only short-term survival of parasites treated with UV in rainbow trout resulted in a protective response to challenges with fully infective triactinomyxons. Prior treatments of juvenile rainbow trout with UV-treated triactinomyxons (10 and 20 mJ/cm(2)) resulted in a reduced prevalence of infection and significantly lower concentrations of cranial myxospores (two direct measures of the severity of whirling disease) compared with trout receiving no prior treatments when assessed 5 months post parasite exposure to fully infective triactinomyxons. 相似文献