首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurofilaments take highly ordered structures composed of parallel arrays of 10 nm filaments linked to each other with frequent cross-bridge. It is composed of three components named NF-L, NF-M and NF-H. NF-L is able to form filamentous network alone in Sf9 cells, while M could not. To identify which domain is essential for the assembly of NF-L, two chimera proteins named ML and MML were constructed: ML was composed of the head domain of NF-M and other domains of NF-L; MML was composed of the head and Coil-1 domains of NF-M and Coil-2 and tail domains of NFL. ML was not only able to form filaments in Sf9 cells, but also co-assemble with NF-M into parallel filamentous bundies. MML could not assemble into filaments. Thus the Coil-1 domain of NF-L was essential for its assembly.  相似文献   

2.
Neurofilaments take highly ordered structures composed of parallel mays of 10 nm filaments linked to each other with frequent cross-bridge. It is composed of three components named NF-L, NF-M and NF-H. NF-L is able to form filamentous network alone in Sf9 cells, while M could not. To identify which domain is essential for the assembly of NF-L, two chimera proteins named ML and MML were constructed: ML was composed of the head domain of NF-M and other domains of NF-L; MML was composed of the head and Coil-1 domains of NF-M and Coil-2 and tail domains of NF-L. ML was not only able to form filaments in Sf9 cells, but also co-assemble with NF-M into parallel filamentous bundles. MML could not assemble into filaments. Thus the Coil-1 domain of NF-L was essential for its assembly.  相似文献   

3.
The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.  相似文献   

4.
The small Tims chaperone hydrophobic precursors across the mitochondrial intermembrane space. Tim9 and Tim10 form the soluble TIM10 complex that binds precursors exiting from the outer membrane. Tim12 functions downstream, as the only small Tim peripherally attached on the inner membrane. We show that Tim12 has an intrinsic affinity for inner mitochondrial membrane lipids, in contrast to the other small Tims. We find that the C-terminal end of Tim12 is essential in vivo. Its deletion crucially abolishes assembly of Tim12 in complexes with the other Tims. The N-terminal end contains targeting information and also mediates direct binding of Tim12 to the transmembrane segments of the carrier substrates. These results provide a molecular basis for the concept that the essential role of Tim12 relies on its unique assembly properties that allow this subunit to bridge the soluble and membrane-embedded translocases in the carrier import pathway.  相似文献   

5.
6.
Although progress has been made in determining the structure and understanding the function of photosystem I (PSI), the PSI assembly process remains poorly understood. PsaC is an essential subunit of PSI and participates in the transfer of electrons to ferredoxin. However, how PsaC is assembled during accumulation of the PSI complex is unknown. In the present study, we showed that Pyg7 localized to the stromal thylakoid and associated with the PSI complex. We also showed that Pyg7 interacted with PsaC. Furthermore, we found that the PSI assembly process was blocked following formation of the PsaAB heterodimer in the pyg7 mutant. In addition, the analyses of PSI stability in Pyg7RNAi plants showed that Pyg7 is involved in maintaining the assembled PSI complex under excess‐light conditions. Moreover, we demonstrated that decreased Pyg7 content resulted in decreased efficiency of PSI assembly in Pyg7RNAi plants. These findings suggest that the role of Pyg7 in PSI biogenesis has evolved as an essential assembly factor by interacting with PsaC in Arabidopsis, in addition to being a stability factor for PSI as seen in Synechocystis.  相似文献   

7.
《The Journal of cell biology》1993,123(6):1517-1533
Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2- terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.  相似文献   

8.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   

9.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

10.
Mitotic spindles are microtubule-based structures, but increasing evidence indicates that filamentous actin (F-actin) and F-actin–based motors are components of these structures. ADD1 (adducin-1) is an actin-binding protein that has been shown to play important roles in the stabilization of the membrane cortical cytoskeleton and cell–cell adhesions. In this study, we show that ADD1 associates with mitotic spindles and is crucial for proper spindle assembly and mitotic progression. Phosphorylation of ADD1 at Ser12 and Ser355 by cyclin-dependent kinase 1 enables ADD1 to bind to myosin-X (Myo10) and therefore to associate with mitotic spindles. ADD1 depletion resulted in distorted, elongated, and multipolar spindles, accompanied by aberrant chromosomal alignment. Remarkably, the mitotic defects caused by ADD1 depletion were rescued by reexpression of ADD1 but not of an ADD1 mutant defective in Myo10 binding. Together, our findings unveil a novel function for ADD1 in mitotic spindle assembly through its interaction with Myo10.  相似文献   

11.
Angiogenic factor with G-patch and FHA domains 1 (AGGF1) exhibits a dynamic distribution from the nucleus to the cytoplasm in endothelial cells during angiogene...  相似文献   

12.
Methionine aminopeptidase type 1 (MetAP1) cotranslationally removes N-terminal methionine from nascent polypeptides, when the second residue in the primary structure is small and uncharged. Eukaryotic MetAP1 has an N-terminal zinc finger domain not found in prokaryotic MetAPs. We hypothesized that the zinc finger domain mediates the association of MetAP1 with the ribosomes and have reported genetic evidence that it is important for the normal function of MetAP1 in vivo. In this study, the intracellular role of the zinc finger domain in yeast MetAP1 function was examined. Wild-type MetAP1 expressed in a yeast map1 null strain removed 100% of N-terminal methionine from a reporter protein, while zinc finger mutants removed only 31-35%. Ribosome profiles of map1 null expressing wild-type MetAP1 or one of three zinc finger mutants were compared. Wild-type MetAP1 was found to be an 80S translational complex-associated protein that primarily associates with the 60S subunit. Deletion of the zinc finger domain did not significantly alter the ribosome profile distribution of MetAP1. In contrast, single point mutations in the first or second zinc finger motif disrupted association of MetAP1 with the 60S subunit and the 80S translational complex. Together, these results indicate that the zinc finger domain is essential for the normal processing function of MetAP1 in vivo and suggest that it may be important for the proper functional alignment of MetAP1 on the ribosomes.  相似文献   

13.
Journal of Plant Biochemistry and Biotechnology - APETALA1 (AP1) and CAULIFLOWER (CAL) are involved in floral meristem identity and suppress the inflorescence meristem program in flower meristem in...  相似文献   

14.
The Rice dwarf virus (RDV) P7 structural protein is the key protein in the RDV particle assembly. The P7 protein was digested partially or completely by Staphylococcus aureus V8 protease and/or Pseudomonasfragi Asp-N protease. The molecular mass and the N-terminal amino acid sequence of the polypeptide fragments of the P7 protein were determined by SDS-PAGE and the Edman degradation method, respectively. Then the polypeptides were located in the deduced amino acid sequence of the RDV P7 protein based on the nucleotide sequence information, with the knowledge of the specific cleavage sites of the Staphylococcus aureus V8 and Pseudomonasfragi Asp-N protease, and the two RNA-binding domains in the P7 protein were identified. Domain 1 was located in the residue 128-249 containing 122 amino acids and domain 2 was located in the residue 325-355 containing 31 amino acids. Thus, these two domains may play an important role in the virus particle assembly by contributing to the packaging of viral dsRNAs inside the particles. The two domains may be novel RNA-binding domains, because no amino acid sequences highly similar to the conservative sequences of known dsRNA-binding domains reported so far. The similarity between the motif of domain 1 and the motif of the DNA-binding protein suggests that the DNA-binding activity of the RDV P7 protein may be due to this sequence. The similarity between the motif of domain 1 and the motif of the RNA polymerase domain suggests that the P7 protein may also play a role in RNA synthesis, besides its function in the assembly and subsequent packaging of viral dsRNA into core particles.  相似文献   

15.
16.
17.
Small heat-shock proteins (Hsps) are ubiquitous molecular chaperones which prevent the unspecific aggregation of non-native proteins. For Hsp26, a cytosolic sHsp from of Saccharomyces cerevisiae, it has been shown that, at elevated temperatures, the 24 subunit complex dissociates into dimers. This dissociation is required for the efficient interaction with non-native proteins. Deletion analysis of the protein showed that the N-terminal half of Hsp26 (amino acid residues 1-95) is required for the assembly of the oligomer. Limited proteolysis in combination with mass spectrometry suggested that this region can be divided in two parts, an N-terminal segment including amino acid residues 1-30 and a second part ranging from residues 31-95. To analyze the structure and function of the N-terminal part of Hsp26 we created a deletion mutant lacking amino acid residues 1-30. We show that the oligomeric state and the structure, as determined by size exclusion chromatography and electron microscopy, corresponds to that of the Hsp26 wild-type protein. Furthermore, this truncated version of Hsp26 is active as a chaperone. However, in contrast to full length Hsp26, the truncated version dissociates at lower temperatures and complexes with non-native proteins are less stable than those found with wild-type Hsp26. Our results suggest that the N-terminal segment of Hsp26 is involved in both, oligomerization and chaperone function and that the second part of the N-terminal region (amino acid residues 31-95) is essential for both functions.  相似文献   

18.
The coiled-coil domain of TRAF6 is essential for its auto-ubiquitination   总被引:1,自引:0,他引:1  
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological processes, including adaptive immunity, innate immunity, and bone metabolism. Importantly, it is essential for activating NF-kappaB signaling pathway in response to interleukin-1 and Toll-like receptor ligands. Previously, we characterized TRAF6 to be a ubiquitin ligase. In combination with the ubiquitin conjugating enzyme complex Ubc13/Uev1A, TRAF6 could catalyze the formation on itself of unique Lys-63 linked polyubiquitin chain that positively regulated NF-kappaB signaling pathway. However, it remains unknown how this auto-ubiquitination process is regulated. In this study, we found that the coiled-coil domain of TRAF6 was essential for its auto-ubiquitination and activating NF-kappaB signaling pathway. This domain served not as the specific target where the polyubiquitin chain was linked, but as a specific bridge to recruit Ubc13/Uev1A.  相似文献   

19.
20.
During mitosis, the inner centromeric region (ICR) recruits protein complexes that regulate sister chromatid cohesion, monitor tension, and modulate microtubule attachment. Biochemical pathways that govern formation of the inner centromere remain elusive. The kinetochore protein Bub1 was shown to promote assembly of the outer kinetochore components, such as BubR1 and CENP-F, on centromeres. Bub1 was also implicated in targeting of Shugoshin (Sgo) to the ICR. We show that Bub1 works as a master organizer of the ICR. Depletion of Bub1 from Xenopus laevis egg extract or from HeLa cells resulted in both destabilization and displacement of chromosomal passenger complex (CPC) from the ICR. Moreover, soluble Bub1 controls the binding of Sgo to chromatin, whereas the CPC restricts loading of Sgo specifically onto centromeres. We further provide evidence that Bub1 kinase activity is pivotal for recruitment of all of these components. Together, our findings demonstrate that Bub1 acts at multiple points to assure the correct kinetochore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号