首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gram-positive, spore-forming, motile, cellulolytic rods were isolated from 10(7) dilutions of pig fecal samples. The pigs had previously been fed pure cultures of the ruminal cellulolytic organism Clostridium longisporum. Isolates formed terminal to subterminal spores, and a fermentable carbohydrate was required for growth. Besides cellulose, the isolates utilized cellobiose, glycogen, maltose, and starch. However, glucose, fructose, sucrose, pectin, and xylose were not used as energy sources. Major fermentation products included formate and butyrate. The isolates did not digest proteins from gelatin or milk. Unlike C. longisporum, which has limited ability to degrade cell wall components from grasses (switchgrass, bromegrass, and ryegrass), the swine isolates were equally effective in degrading these components from both alfalfa and grasses. The extent of degradation was equal to or better than that observed with the predominant ruminal cellulolytic organisms. On the basis of morphology, motility, spore formation, fermentation products, and the ability to hydrolyze cellulose, the isolates are considered to be a new species of the genus Clostridium. It is unclear whether C. longisporum played a role in the establishment or occurrence of this newly described cellulolytic species. This is the first report of a cellulolytic Clostridium sp. isolated from the pig intestinal tract.  相似文献   

2.
Gram-positive, spore-forming, motile, cellulolytic rods were isolated from 10(7) dilutions of pig fecal samples. The pigs had previously been fed pure cultures of the ruminal cellulolytic organism Clostridium longisporum. Isolates formed terminal to subterminal spores, and a fermentable carbohydrate was required for growth. Besides cellulose, the isolates utilized cellobiose, glycogen, maltose, and starch. However, glucose, fructose, sucrose, pectin, and xylose were not used as energy sources. Major fermentation products included formate and butyrate. The isolates did not digest proteins from gelatin or milk. Unlike C. longisporum, which has limited ability to degrade cell wall components from grasses (switchgrass, bromegrass, and ryegrass), the swine isolates were equally effective in degrading these components from both alfalfa and grasses. The extent of degradation was equal to or better than that observed with the predominant ruminal cellulolytic organisms. On the basis of morphology, motility, spore formation, fermentation products, and the ability to hydrolyze cellulose, the isolates are considered to be a new species of the genus Clostridium. It is unclear whether C. longisporum played a role in the establishment or occurrence of this newly described cellulolytic species. This is the first report of a cellulolytic Clostridium sp. isolated from the pig intestinal tract.  相似文献   

3.
The influence of three different feeds, wheat straw, sorghum and berseem, on total and cellulolytic bacterial counts in the buffalo rumen at different time intervals from 0 to 8 h after feeding was studied. Berseem feeding supported maximum growth of rumen bacteria in general and cellulolytic bacteria in particular. Wheat straw supported the poorest growth.
The types of cellulolytic bacteria recovered from the rumen of adult buffaloes were Ruminococcus albus, R. flavefaciens, Bacteroides succinogenes, Butyrivibrio fibrisolvens, Clostridium lochheadii, Cl. longisporum and other Clostridium spp. Cellulolytic cocci were present in smaller numbers than rod forms in the rumen of wheat-straw-fed buffaloes, whereas the cocci outnumbered rod forms in sorghum-and berseem-fed buffaloes.  相似文献   

4.
5.
The dominant rumen bacteria in high-arctic Svalbard reindeer were characterized, their population densities were estimated, and ruminal pH was determined in summer, when food quality and availability are good, and in winter, when they are poor. In summer the total cultured viable population density was (2.09 +/- 1.26) X 10(10) cells ml-1, whereas in winter it was (0.36 +/- 0.29) X 10(10) cells ml-1, representing a decrease to 17% of the summer population density. On culture, Butyrivibrio fibrisolvens represented 22% of the bacterial population in summer and 30% in winter. Streptococcus bovis represented 17% of the bacterial population in summer but only 4% in winter. Methanogenic bacteria were present at 10(4) cells ml-1 in summer and 10(7) cells ml-1 in winter. In summer and winter, respectively, the proportions of the viable population showing the following activities were as follows: starch utilization, 68 and 63%; fiber digestion, 31 and 74%; cellulolysis, 15 and 35%; xylanolysis, 30 and 58%; proteolysis, 51 and 28%; ureolysis, 40 and 54%; and lactate utilization, 13 and 4%. The principal cellulolytic bacterium was B. fibrisolvens, which represented 66 and 52% of the cellulolytic population in summer and winter, respectively. The results indicate that the microflora of the rumen of Svalbard reindeer is highly effective in fiber digestion and nitrogen metabolism, allowing the animals to survive under the austere nutritional conditions typical of their high-arctic habitat.  相似文献   

6.
The dominant rumen bacteria in high-arctic Svalbard reindeer were characterized, their population densities were estimated, and ruminal pH was determined in summer, when food quality and availability are good, and in winter, when they are poor. In summer the total cultured viable population density was (2.09 +/- 1.26) X 10(10) cells ml-1, whereas in winter it was (0.36 +/- 0.29) X 10(10) cells ml-1, representing a decrease to 17% of the summer population density. On culture, Butyrivibrio fibrisolvens represented 22% of the bacterial population in summer and 30% in winter. Streptococcus bovis represented 17% of the bacterial population in summer but only 4% in winter. Methanogenic bacteria were present at 10(4) cells ml-1 in summer and 10(7) cells ml-1 in winter. In summer and winter, respectively, the proportions of the viable population showing the following activities were as follows: starch utilization, 68 and 63%; fiber digestion, 31 and 74%; cellulolysis, 15 and 35%; xylanolysis, 30 and 58%; proteolysis, 51 and 28%; ureolysis, 40 and 54%; and lactate utilization, 13 and 4%. The principal cellulolytic bacterium was B. fibrisolvens, which represented 66 and 52% of the cellulolytic population in summer and winter, respectively. The results indicate that the microflora of the rumen of Svalbard reindeer is highly effective in fiber digestion and nitrogen metabolism, allowing the animals to survive under the austere nutritional conditions typical of their high-arctic habitat.  相似文献   

7.
Neocallimastix sp. NC71 and Piromyces sp. PC12 isolated from the calf remen grew optimally at 39 degrees C and pH 6.5-6.7, utilized a wide range of mono-, oligo- and polysaccharides and exhibited CMCase, Avicelase, cellobiase, amylase and xylanase activities. The end-products of wheat straw fermentation by both strains were acetate, formate, ethanol and lactate. The number of Neocallimastix sp. zoospores in the rumen of cows in the first 3 h after feeding with hay-silage-concentrate diets varied from 7 x 10(3) to 5.4 x 10(5) ml-1; the number of uniflagellate zoospores varied from 10(4) to 10(5) ml-1. Fungal zoosporgenesis and colonization of plant substrates in the rumen were induced by feed intake and were favoured by increased levels of crude fibre in the diet.  相似文献   

8.
A competitive PCR technique was used to enumerate the proteolytic bacterium Clostridium proteoclasticum from the rumen. A PCR primer, which circumscribes this organism and several closely related strains, was designed for a variable region within their 16S rRNA genes and was used in conjunction with a universal forward primer. This primer pair was tested for specificity against 85 ruminal bacterial strains. An internal control DNA was constructed for use in competitive PCRs and was shown to amplify under the same reaction conditions and with the same amplification efficiency as the target DNA. DNA from a known number of C. proteoclasticum cells was coamplified with the internal control to construct a standard curve. Rumen samples were collected from eight dairy cows fed four diets in rotation: high nitrogen, high nitrogen supplemented with carbohydrate, low nitrogen, and low nitrogen supplemented with carbohydrate. DNA extracted from these and spiked with internal control DNA was amplified with the C. proteoclasticum primer pair. The relative intensities of the PCR products were used to quantitate the numbers of C. proteoclasticum cell equivalents from the rumen samples. The numbers ranged from 2.01 × 106 ml−1 to 3.12 × 107 ml−1. There was no significant effect on the numbers of C. proteoclasticum detected in rumen samples among cows fed the four diets. The utility of the competitive PCR approach for quantifying ruminal bacterial populations in vivo and the occurrence of C. proteoclasticum in forage-fed dairy cows are discussed.  相似文献   

9.
Condensed tannins in forage legumes improve the nutrition of sheep by reducing ruminal degradation of plant protein and increasing crude protein flow to the intestine. However, the effects of condensed tannins in forage legumes on rumen bacterial populations in vivo are poorly understood. The aim of this study was to investigate the specific effects of condensed tannins from Lotus corniculatus on four proteolytic rumen bacteria in sheep during and after transition from a ryegrass (Lolium perenne)-white clover (Trifolium repens) diet (i.e., low condensed tannins) to a Lotus corniculatus diet (i.e., higher condensed tannins). The bacterial populations were quantified using a competitive polymerase chain reaction. Lotus corniculatus was fed with or without ruminal infusions of polyethylene glycol (PEG), which binds to and inactivates condensed tannins, enabling the effect of condensed tannins on bacterial populations to be examined. When sheep fed on ryegrass-white clover, populations of Clostridium proteoclasticum B316T, Butyrivibrio fibrisolvens C211a, Eubacterium sp. C12b, and Streptococcus bovis B315 were 1.5 x 10(8), 1.1 x 10(6), 4.6 x 10(8), and 7.1 x 10(6) mL(-1), respectively. When the diet was changed to Lotus corniculatus, the average populations (after 8-120 h) of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis decreased (P < 0.001) to 2.4 x 10(7), 1.1 x 10(5), 1.1 x 10(8), and 2.5 x 10(5) mL(-1), respectively. When PEG was infused into the rumen of sheep fed Lotus corniculatus, the populations of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis were higher (P < 0.01-0.001) than in sheep fed Lotus corniculatus without the PEG infusion, with average populations (after 8-120 h) of 4.9 x 10(7), 3.8 x 10(5), 1.9 x 10(8), and 1.0 x 10(6), respectively. Sheep fed the Lotus corniculatus diet had lower rumen proteinase activity, ammonia, and soluble nitrogen (P < 0.05-0.001) than sheep that were fed Lotus corniculatus plus PEG. The Lotus corniculatus diet reduced rumen nitrogen digestibility (P < 0.05) and ammonia pool size and increased the flow of undegraded feed nitrogen to the abomasum. The nitrogen intake, rumen non-ammonia nitrogen pool size, rumen microbial non-ammonia nitrogen pool size, and abomasal microbial non-ammonia nitrogen fluxes were similar both in sheep fed only Lotus corniculatus and in sheep fed Lotus corniculatus plus PEG, but nonmicrobial non-ammonia nitrogen flux to the abomasum was higher (P < 0.01) for the sheep fed only Lotus corniculatus. Although condensed tannins in Lotus corniculatus reduced the populations of some proteolytic bacteria, total ruminal microbial protein and microbial protein outflow to the abomasum were unchanged, suggesting a species-specific effect of condensed tannins on bacteria in the rumen.  相似文献   

10.
In free-living (FL) reindeer eating a natural mixed winter diet dominated by lichens, captive (CF) reindeer fed pure lichens ad libitum, and CF reindeer subsequently starved for 1 day (CS1 reindeer) or 4 days (CS4 reindeer), the dominant rumen anaerobic bacteria were characterized, their population densities were estimated, and ruminal pH and volatile fatty acid concentrations were determined. In the FL reindeer, the total median viable anaerobic bacterial population ranged from 18 x 10(8) to 35 x 10(8) cells per ml of rumen fluid (n = 4), compared with 26 x 10(8) to 34 x 10(8) and 0.09 x 10(8) to 0.1 x 10(8) cells per ml of rumen fluid in CF reindeer (n = 2) and CS4 reindeer (n = 2), respectively. The median bacterial population adhering to the rumen solids ranged from 260 x 10(8) to 450 x 10(8), 21 x 10(8) to 38 x 10(8), and 0.5 x 10(8) cells per g (wet weight) of rumen solids in FL, CF, and CS4 reindeer, respectively. Although there were variations in the rumen bacterial composition among the FL reindeer (n = 4), strains of Bacteroides, Fibrobacter, Streptococcus, and Clostridium dominated in the rumen fluid. Streptococcus spp. and Clostridium spp. were the dominant bacteria in the CF reindeer (n = 2), while in the CS4 reindeer (n = 2) the dominant bacteria were Fusobacterium spp., members of the family Enterobacteriaceae, and Eubacterium spp. Transmission electron micrographs of lichen particles from the rumen of one FL reindeer, one CF reindeer, and one CS4 reindeer show bacteria resembling Bacteroides spp. adhering to the lichen particles, evidently digesting the lichen hyphae from the inside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of steroidal saponins (SAP) isolated from Yucca schidigera extract on ruminal bacteria and fungi were investigated in pure culture studies. Prevotella bryantii, Ruminobacter amylophilus, Selenomonas ruminantium and Streptococcus bovis were cultured through ten 24-h transfers in ruminal fluid medium containing 0 or 25 microg SAP ml-1 (measured as smilagenin equivalents). The four strains, each non-exposed or pre-exposed to SAP, were then inoculated into medium containing 0 or 250 microgram smilagenin equivalents ml-1 and 24-h growth curves were determined. The cellulolytic ruminal bacteria Ruminococcus flavefaciens, Fibrobacter succinogenes and Rc. albus were cultured for 72 h on Whatman no. 1 filter paper in medium containing 0, 9, 90 or 180 microgram SAP ml-1 for the determination of filter paper digestion and endoglucanase activity. The ruminal bacteria differed in their responses to SAP. Steroidal saponins in the medium reduced the growth of Strep. bovis (P < 0.01 at 2, 3, 4, 5, 6 and 8 h), P. bryantii (P < 0.05 at 4, 5, 6, 8, 10 and 24 h) and Rb. amylophilus (P < 0.05 at 14 and 24 h), but the growth of S. ruminantium was enhanced (P < 0.05) at 10, 14 and 24 h. The growth curves of all four non-cellulolytic species were similar (P > 0.05) between pre-exposed and non-exposed cultures and the concentrations of total SAP and soluble (deglycosylated) SAP in the liquid fraction were unchanged (P > 0.05) over time. Steroidal saponins inhibited the digestion of filter paper by all three cellulolytic bacteria, but F. succinogenes was less (P < 0.05) sensitive to SAP and more (P < 0. 05) effective at deglycosylating SAP than were Rc. flavefaciens or Rc. albus. Transmission electron microscopy revealed that SAP altered the cell walls of the SAP-inhibited non-cellulolytic bacteria. The ruminal fungi, Neocallimastix frontalis and Piromyces rhizinflata, were cultured on filter paper in medium containing 0, 0. 45, 2.25 or 4.5 microgram SAP ml-1. Filter paper digestion by both fungi was completely inhibited by 2.25 microgram SAP ml-1. Steroidal saponins from Y. schidigera inhibit cellulolytic ruminal bacteria and fungi, but their effects on amylolytic bacteria are species dependent and similar to the effects of ionophores. As such, SAP may be useful in nutritional applications targeting starch-digesting ruminal micro-organisms.  相似文献   

12.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520 kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10 cm (top) and 25-35 cm beneath the top of the particle mat (middle) and 5-10 cm above the rumen floor (bottom). For a main plot treatment (H x C), repeated samples were collected at four time intervals (1 h before and 2, 5 and 10 h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P < 0.05); pH and bicarbonate concentration increased (P < 0.05), while DM, NDF, ADF and ADL contents in SM, MPL and SG did not differ. Higher NDF content of hay (from 47-62%) increased SM, fibre fractions in SM, MPL, pH and concentration of bicarbonate in ruminal digesta, especially when 50% concentrate was given, while SG decreased. When the concentrate level was enhanced from 20 to 50%, digesta SM, MPL and the content of DM and NDF in SRF increased, while pH, concentrations of SCFA and acetate decreased when low-fibre hay was given. With longer time after feeding the digesta SM was reduced and fibre content in SM increased. The increase of the fibre content of hay reduced the possible negative effect of high concentrate level on the stratification of ruminal digesta. The decrease of the fibre content of hay promised better conditions for fibre digestion in the rumen when concentrate availability is limited.  相似文献   

13.
The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus flavefaciens in ruminal fluid was substantially lower (P < 0.05) when L was included. Compared to C, the amount of Ruminococcus albus decreased by an average of 40% regardless of oil level or type. Overall, the results indicate that some ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.  相似文献   

14.
The ruminal microbiome of cattle plays an important role not only in animal health and productivity but also in food safety and environment. Microbial profiles of rumen fluid obtained from dairy cows fed on three different fiber/starch diet compositions were characterized. Tagged 16S rRNA gene pyrosequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all three sample groups belonged to phyla Bacteroidetes, Firmicutes, and Proteobacteria. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with a high fiber diet, the fibrolytic and cellulolytic bacteria Lachnospiraceae, Ruminococcaceae, and Fibrobacteraceae were found in highest abundance compared with animals fed other diets with lower fiber content. The polysaccharide-degrading Prevotellaceae and Flavobacteriaceae bacteria were most abundant in the rumen of cows fed on diet with the highest starch content. These data highlight the ruminal microbiome’s ability to adapt to feed composition and also provide a basis for the development of feed formulation systems designed to improve livestock productivity.  相似文献   

15.
Four rumen and proximal duodenum fistulated non-lactating Holstein cows were used to determine the effect of extrusion at 120 degrees C of whole horse beans (Vicia faba cv Talo) on in vitro nitrogen (N) solubility and in situ degradation of dry matter (DM) and crude protein (CP) in the rumen and intestine. Cows were fed a ration of 30% whole horse beans (WHB) and 70% Italian rye-grass hay. The degradation of DM and CP was estimated using nylon bags suspended in the rumen for 2, 4, 7, 16, 24 and 48 h; the effective ruminal degradability of DM and CP was evaluated assuming a ruminal outflow rate of 0.06/h. Bags incubated in the rumen for 16 h were introduced into the small intestine through the duodenal cannula and subsequently recovered in the feces. Extrusion of WHB reduced N-solubility in buffer solution (21.1 vs 74.9%). Processing diminished the effective rumen degradability of DM (74.6 vs 80.4%) and CP (70.2 vs 89.2%). Meanwhile, the amounts of DM and CP digested in the intestine increased: 9.6 vs 1.4% and 25.2 vs 3.0% respectively. Therefore, feeds containing extruded WHB increase the availability of dietary proteins in the intestine compared with diets containing raw WHB.  相似文献   

16.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

17.
Selected anaerobic bacterial groups in cecal and colonic contents of clinically healthy pigs fed a corn-soybean meal production diet were determined at sacrifice after 4, 8, and 11 weeks on feed, corresponding to intervals within the growing-finishing growth period. By using ruminal fluid-based media, the densities of the culturable anaerobic population; the cellulolytic, pectin-fermenting, pectin-hydrolyzing, xylan-fermenting; and the xylan-hydrolyzing, sulfate-reducing, and methanogenic bacterial populations were estimated. An analysis of variance was performed on these bacterial group variables to examine the effects of phase (weeks on feed), site (cecum or colon), or the interaction of phase with site. The population of total anaerobic bacteria was twice as dense in the colon as it was in the cecum (2 x 10(10) versus 1 x 10(10)/g [wet weight]; P = 0.001). The proportion of cellulolytic bacteria was lower at 4 weeks on feed than at 8 or 11 weeks (23 versus 32%; P = 0.026), while the proportion of pectin-fermenting bacteria depended on the interaction of phase with site (P = 0.021). The numbers of sulfate-reducing bacteria were significantly higher in the colon than in the cecum (6 x 10(7) versus 3 x 10(7); P = 0.014), as were methanogenic bacteria (19 x 10(7) versus 0.6 x 10(7); P = 0.0002). The remaining bacterial groups were stable with respect to phase and site. The results suggest that except for density differences, the microbial communities of the pig cecum and colon are similar in composition throughout the growing-finishing phase.  相似文献   

18.
Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 106-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate ( K d) and the rate of passage of solids from the rumen ( K p). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on stella ® software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.  相似文献   

19.
Xylanolytic and cellulolytic bacteria were enumerated over an 86-day period from fecal samples of 10 8-month-old gilts that were fed either a control or a 40% alfalfa meal (high-fiber) diet. Fecal samples were collected from all pigs on days 0, 3, 5, 12, 25, 37, 58, and 86. Overall, the numbers of xylanolytic bacteria producing greater than 5-mm-diameter zones of clearing on 0.24% xylan roll tube medium after 24 to 36 h of incubation were 1.6 X 10(8) and 4.2 X 10(8)/g (dry weight) of feces for the control pigs and those fed the high-fiber diet, respectively. After 1 week of incubation, a large number of smaller zones of clearing (1 to 2 mm) appeared. Besides Bacteroides succinogenes and Ruminococcus flavefaciens, which produced faint zones of clearing in xylan roll tubes, three strains which closely resembled B. ruminicola hydrolyzed and used xylan for growth. The overall numbers of cellulolytic bacteria producing zones of clearing in 0.5% agar roll tube medium were 0.36 X 10(8) and 4.1 X 10(8)/g for the control pigs and those fed the high-fiber diet, respectively. B. succinogenes was the predominant cellulolytic isolate from both groups of pigs, and R. flavefaciens was found in a ratio of approximately 1 to 15 with B. succinogenes. Degradation of xylan and cellulose, measured by in vitro dry matter disappearance after inoculation with fecal samples, was significantly greater for pigs fed the high-fiber diet than that for the controls. These data suggest that the number of fibrolytic microorganisms and their activity in the large intestine of the adult pig can be increased by feeding pigs high-alfalfa-fiber diets and that these organisms are similar to those found in the rumen.  相似文献   

20.
Competitive PCR assays were developed for the enumeration of the rumen cellulolytic bacterial species: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. The assays, targeting species-specific regions of 16S rDNA, were evaluated using DNA from pure culture and rumen digesta spiked with the relevant cellulolytic species. Minimum detection levels for F. succinogenes, R. albus and R. flavefaciens were 1-10 cells in pure culture and 10(3-4) cells per ml in mixed culture. The assays were reproducible and 11-13% inter- and intra-assay variations were observed. Enumeration of the cellulolytic species in the rumen and alimentary tract of sheep found F. succinogenes dominant (10(7) per ml of rumen digesta) compared to the Ruminococcus spp. (10(4-6) per ml). The population size of the three species did not change after the proportion of dietary alfalfa hay was increased. All three species were detected in the rumen, omasum, caecum, colon and rectum. Numbers of the cellulolytic species at these sites varied within and between animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号