首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four canonical bases that make up genomic DNA are subject to a variety of chemical modifications in living systems. Recent years have witnessed the discovery of various new modified bases and of the enzymes responsible for their processing. Here, we review the range of DNA base modifications currently known and recent advances in chemical methodology that have driven progress in this field, in particular regarding their detection and sequencing. Elucidating the cellular functions of modifications remains an ongoing challenge; we discuss recent contributions to this area before exploring their relevance in medicine.  相似文献   

2.
3.
The implementation of a new technology is almost always surrounded by a debate on the moral and social implications that may arise. The debate with regard to genetically modified (GM) crops has been one of the longest and most controversial. However, one area of the debate that receives less attention is the role that intellectual property can play. The introduction of an effective and yet appropriate intellectual property system addressing society's particular needs can eliminate some of these issues. This paper looks at whether the situation in Europe is meeting our current needs and also addresses the role intellectual property can play in the debate over the introduction of GM crops in developing countries.  相似文献   

4.
5.
Carbonyl modified proteins in cellular regulation, aging, and disease   总被引:21,自引:0,他引:21  
The oxidative modification of proteins by reactive species is implicated in the etiology or progression of a panoply of disorders and diseases. The level of these modified molecules can be quantitated by measurement of the protein carbonyl content, which has been shown to increase in a variety of diseases and processes, notably during aging. For the most part, oxidatively modified proteins are not repaired and must be removed by proteolytic degradation, a process which normally proceeds very efficiently, from microorganisms to mammals. In eukaryotes, removal is usually carried out by the proteosome, which selectively degrades oxidatively modified proteins, whether they be damaged by reactive oxygen species or specifically oxidized by cellular regulatory processes. The molecular deficiencies that cause accumulation of oxidatively modified proteins are not identified, but regardless of cause, the accumulation is likely to disrupt normal cellular function.  相似文献   

6.
In this short review, including 187 references, the issues of biological activity of stilbene derivatives and nucleosides and the biological and medicinal potential of fusion of these two classes are discussed. The stilbenes, especially the stilbenoids, and nucleosides are both biologically active. Hybrids formed from binding of these compounds have not yet been broadly studied. However, those that have been investigated exhibit desirable medicinal properties. The review is divided in such parts: I. Derivative of stilbene (biomedical investigations, biological activities in cells, enzymes and hazard), parts II. naturally occurred nucleoside and its derivatives: uridine, thymidine and 5-methyluridine, cytidine, adenosine, guanosine and part III. hybrid molecules- drugs and hybrid molecules- nucleoside - stilbene and its derivative.  相似文献   

7.
Genetically modified crops: success, safety assessment, and public concern   总被引:2,自引:0,他引:2  
With the emergence of transgenic technologies, new ways to improve the agronomic performance of crops for food, feed, and processing applications have been devised. In addition, ability to express foreign genes using transgenic technologies has opened up options for producing large quantities of commercially important industrial or pharmaceutical products in plants. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of genetically modified (GM) crops on the environment. Potential contamination of the environment and food chains has prompted detailed consideration of how such crops and the molecules that they produce can be effectively isolated and contained. One of the reasonable steps after creating a transgenic plant is to evaluate its potential benefits and risks to the environment and these should be compared to those generated by traditional agricultural practices. The precautionary approach in risk management of GM plants may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Effective risk assessment and monitoring mechanisms are the basic prerequisites of any legal framework to adequately address the risks and watch out for new risks. Several agencies in different countries monitor the release of GM organisms or frame guidelines for the appropriate application of recombinant organisms in agro-industries so as to assure the safe use of recombinant organisms and to achieve sound overall development. We feel that it is important to establish an internationally harmonized framework for the safe handling of recombinant DNA organisms within a few years.This is IMTECH Communication No. 038/2005.  相似文献   

8.
Heme-propionates of horseradish peroxidase (HRP) were esterified by p-nitrophenol, phenol and p-methylphenol to change its electron character and to increase its hydrophobicity. These synthetic hemes were inserted apo-HRP to give a novel HRP, respectively. Of the three reconstituted HRPs, reconstituted HRP with p-nitrophenol-modified heme derivative had a larger initial rate, affinity, catalytic efficiency and substrate-binding efficiency than native HRP in aqueous buffer and some solvents. The reconstituted HRPs showed higher thermostability and tolerance of DMF because of the increase of the hydrophobicity of the active site. Changing the electron character of the aromatic moieties linked at each terminal of the two heme-propionates can control activity and stability of HRP. The initial rate, affinity, catalytic efficiency and substrate-binding efficiency increased with the increases of electron-withdrawing efficiency of substituents at 4-position of the phenolic used to synthesize the heme derivatives, contrariwise, the stability decreased. The modifications resulted in the increase in the temperature (Tm) at the midpoint of thermal denaturation and the decreases in both enthalpy and entropy change at Tm. The changes of catalytic properties and stabilities are related to the changes of the conformation of HRP. The modification changed the environment of heme and tryptophan, increased α-helix content of HRP. The present work demonstrates that enhancement of the hydrophobicity and the electron-withdrawing efficiency of heme improves the activity and stability of HRP.  相似文献   

9.
10.
11.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

12.
Porcine glucagon was modified at methionine-27 by methylation or oxidation. Antisera against the glucagon derivatives were obtained. One of these antisera showed a high affinity for glucagon, with no cross-reactivity with gut-GLI 1. Biological activities of these derivatives were assessed on rat hepatocytes. Both derivatives had the same maximal glucose-mobilising activity as native glucagon, but a decrease potency, suggesting a crucial role of methionine in the binding of glucagon to its hepatic receptor.  相似文献   

13.
Gene modification of hematopoietic stem cells is increasingly becoming popular as a therapeutic approach, given the recent approvals and the number of new applications for clinical trials targeting monogenetic and immunodeficiency disorders. Technological advances in stem cell selection, culture, transduction and gene editing now allow for efficient ex vivo genetic manipulation of stem cells. Gene-addition techniques using viral vectors (mainly retrovirus- and lentivirus-based) and gene editing using various targeted nuclease platforms (e.g., Zinc finger, TALEN and Crispr/Cas9) are being applied to the treatment of multiple genetic and immunodeficiency disorders. Herein, the current state of the art in manufacturing and critical assays that are required for ex vivo manipulation of stem cells are addressed. Important quality control and safety assays that need to be planned early in the process development phase of these products for regulatory approval are also highlighted.  相似文献   

14.
Continuous phased growth, with a modified chemostat   总被引:4,自引:0,他引:4  
  相似文献   

15.
Feng JY  Liu JZ  Ji LN 《Biochimie》2008,90(9):1337-1346
Artificial prosthetic groups, HeminD1 and HeminD2, were designed and synthesized, which contain one benzene ring and one carboxylic group or two carboxylic groups at the terminal of each propionate side chain of hemin, respectively. HeminD1 and HeminD2 were reconstituted with apo-HRP successfully to produce the two novel HRPs, rHRP1 and rHRP2, respectively. The thermal and solvent tolerances of native and reconstituted HRPs were compared. The cofactor modification increased the thermostability both in aqueous buffer and some organic solvents, and also enhanced the tolerance of some organic solvents. To determine the conformation stability, the unfolding of native and reconstituted HRPs by heat was investigated. Tm was increased from 70.0 °C of nHRP to 75.4 °C of rHRP1 and 76.5 °C of rHRP2 after cofactor modification. Kinetic studies indicated that the cofactor modification increased the substrate affinity and catalytic efficiency both in aqueous buffer and some organic solvents. The catalytic efficiency for phenol oxidation was increased by 55% for rHRP1 in aqueous buffer, and it was also increased by 70% for rHRP1 in 10% ACN. Spectroscopic studies proved that the cofactor modification changed the microenvironment of both heme and tryptophan, increased α-helix content, and increased the tertiary structure around the aromatic residue in HRP. The improvements of catalytic properties are related to these changes of the conformation. The introduction of the hydrophobic domain as well as the retention of the moderate carboxylic group in active site is an efficient method to improve the thermodynamic and catalytic efficiency of HRP.  相似文献   

16.
Crop improvement by genetic modification remains controversial, one of the major issues being the potential for unintended effects. Comparative safety assessment includes targeted analysis of key nutrients and antinutritional factors, but broader scale-profiling or "omics" methods could increase the chances of detecting unintended effects. Comparative assessment should consider the extent of natural variation and not simply compare genetically modified (GM) lines and parental controls. In this study, potato (Solanum tuberosum) proteome diversity has been assessed using a range of diverse non-GM germplasm. In addition, a selection of GM potato lines was compared to assess the potential for unintended differences in protein profiles. Clear qualitative and quantitative differences were found in the protein patterns of the varieties and landraces examined, with 1,077 of 1,111 protein spots analyzed showing statistically significant differences. The diploid species Solanum phureja could be clearly differentiated from tetraploid (Solanum tuberosum) genotypes. Many of the proteins apparently contributing to genotype differentiation are involved in disease and defense responses, the glycolytic pathway, and sugar metabolism or protein targeting/storage. Only nine proteins out of 730 showed significant differences between GM lines and their controls. There was much less variation between GM lines and their non-GM controls compared with that found between different varieties and landraces. A number of proteins were identified by mass spectrometry and added to a potato tuber two-dimensional protein map.  相似文献   

17.
A series of DLC (delocalized lipophilic cation) modified spinosyn derivatives were synthesized and evaluated for antitumor efficacies both in vitro and in vivo. Cancer cell based antiproliferative assays indicated that the more lipophilic derivatives had stronger inhibitory effects on the tested cancer cell lines. Compound 7b and 8b exhibited strong anti-OXPHOS and apoptosis inducing ability. Notable antitumor efficacies of 7b (5 mg/kg) and 8b (2.5 mg/kg) were observed in the in vivo tumor xenograft experiments, however, lethal toxicities were observed on higher dosages. Our findings indicated that DLC modification is a viable strategy to enhance the anti-OXPHOS and antitumor efficacies of spinosyn derivatives.  相似文献   

18.
By adsorbing poly(N-isopropylacrylamide) (PNIPAAm) from an aqueous solution onto oxidised polystyrene without the need for grafting the polymer to the surface, we showed here that cells(CHO-K1) adhere and grow well at 37 °C and are detached by lowering the temperature to 10 °C without any other deleterious treatment. Both bacterial culture grade polystyrene Petri dishes and polystyrene beads (120 to 250μm diameters) commercially available used in static conditions of growth were tested with similar results. The contact angle of modified Petri dishes with a water droplet increases from 36 to 58° when the temperature is raised from 25 to 37 °C indicating change in hydrophilicity of the surface as a function of temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Genetically modified (GM) potatoes expressing a cysteine proteinase inhibitor (cystatin) have been developed as an option for the management of plant parasitic nematodes. The relative impact of such plants on predators and parasitoids (natural enemies) of nontarget insects was determined in a field trial. The trial consisted of GM plants, control plants grown in soil treated with a nematicide and untreated control plants. The quantity of nontarget aphids and their quality as hosts for natural enemies were studied. Aphid density was significantly reduced by nematicide treatment and few natural enemies were recorded from treated potatoes during the study. In contrast, similar numbers of aphids and their more abundant predators were recorded from the untreated control and the GM potatoes. The size of aphids on GM and control plants was recorded twice during the study. During the first sampling period (2-9 July) aphids clip-caged on GM plants were smaller than those on control plants. During the second sampling period (23-30 July) there was no difference in aphid size between those from the GM and control plants. Host size is an important component of host quality. It can affect the size and fecundity of parasitoid females and the sex ratio of their offspring. However, neither the fitness of females of Aphidius ervi, the most prevalent primary parasitoid, nor the sex ratio of their progeny, were affected when the parasitoids developed on aphids feeding on GM plants. Two guilds of secondary parasitoid were also recorded during the study. The fitness of the most abundant species, Aspahes vulgaris, was not affected when it developed on hosts from GM plants. The transgene product, OC I Delta D86, was not detected in aphids that had fed on GM plants in the field, suggesting that there is minimal secondary exposure of natural enemies to the inhibitor. The results indicate that transgenic nematode resistance is potentially more compatible with aphid biological control than is current nematicide use.  相似文献   

20.
Being one of the most commonly used electrochemical mediators for analytical applications, Prussian Blue has found a wide use in the biosensor field during the last years. Its particular characteristic of catalysing hydrogen peroxide reduction has been applied in the construction of a large number of oxidase enzyme-based biosensors for clinical, environmental and food analysis. By modifying an electrode surface with Prussian Blue, it is in fact possible to easily detect hydrogen peroxide at an applied potential around 0.0 V versus Ag/AgCl, thus making possible coupling with oxidase enzymes while also avoiding or reducing electrochemical interferences. Papers dealing with glucose, lactate, cholesterol and galactose biosensors that are based on the use of Prussian Blue have recently appeared in the most important analytical chemistry journals. Another recent trend is the use of a choline probe based on choline oxidase for pesticide determination to exploit the inhibition of acetylcholinesterase by these compounds. In addition, the use of Prussian Blue in the development of biosensors for food analysis has captured the interest of many research groups and led to improved methods for the detection of glutamate, galactose, alcohol, fructosyl amine, formate, lysine and oxalate. This review will focus on the biosensing aspects of Prussian Blue-based sensors giving a general overview of the advantages provided by such mediator as well as its drawbacks. A comprehensive bibliographic reference list is presented together with the most up to date research findings in this field and possible future applications. The commercial potential of sensors based on this mediator will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号