首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B J Rao  B Jwang  M Dutreix 《Biochimie》1991,73(4):363-370
During the directional strand exchange that is promoted by RecA protein between linear duplex DNA and circular single-stranded DNA, a triple-stranded DNA intermediate was formed and persisted even after the completion of strand transfer followed by deproteinization. In the deproteinized three-stranded DNA complexes, the sequestered linear third strand resisted digestion by E coli exonuclease I. In relation to polarity of strand exchange which defines the proximal and distal ends of the duplex DNA, when homology was restricted to the distal region of duplex substrate, the joints formed efficiently and were stable even upon complete deproteinization. Enzymatic probing of deproteinized distal joints with nuclease P1 revealed that the joints consist of long three-stranded structures that at neutral pH lack significant single-stranded character in any of the three strands. Instead of circular single-stranded DNA, when a linear single strand is recombined with partially homologous duplex DNA, in the presence of SSB, the formation of homologous joints by RecA protein, is significantly more efficient at distal end than at the proximal. Taken together, these observations suggest that with any single-stranded DNA (circular or linear), RecA protein efficiently promotes the formation of distal joints, from which, however, authentic strand exchange may not occur. Moreover, these joints might represent an intermediate which is trapped into a stable triple stranded state.  相似文献   

2.
Kappen LS  Xi Z  Jones GB  Goldberg IH 《Biochemistry》2003,42(7):2166-2173
It has been postulated that bulged structures may be intermediates in the DNA strand slippage synthesis associated with the expansion of nucleotide repeats in various neurodegenerative diseases and cancer. To probe the possible role of bulged structures in this process, we have synthesized a wedge-shaped spirocyclic molecule, DDI (double-decker intercalator), on the basis of our earlier work with the bulge-specific derivative prepared from the enediyne antitumor antibiotic neocarzinostatin chromophore. Using a series of primers/templates containing nucleotide repeats [(AAT)(3)/(ATT)(5), (ATT)(3)/(AAT)(5), (CAG)(3)/(CTG)(5), (CA)(4)C/(GT)(7)G, (GT)(4)G/(CA)(7)C, T(9)/A(30), T(20)/A(30)] with the Klenow fragment of Escherichia coli DNA polymerase I, we find that DDI markedly enhances the formation of long DNA products, whose synthesis would require strand slippage to occur. DDI-induced slippage synthesis is more pronounced as the incubation proceeds and at limiting enzyme levels. The gel band pattern of the synthesized DNA products reflects the particular nucleotide repeat unit and is not altered by DDI. The lack of any drug effect on primer extension on M13 DNA and heteropolymeric 62-mer templates, where strand slippage is much less likely to occur, suggests that stimulation of slippage synthesis by DDI is not due to a direct effect on the enzyme. By contrast, other DNA-binding agents, such as ethidium bromide, distamycin, and doxorubicin, inhibit the formation of slippage-induced DNA products, but this block can be overcome by DDI, presumably by its destabilizing duplex DNA-binding sites for these other agents. We propose that DDI binds to or induces the formation of a bulge or related structure, which promotes DNA strand slippage and its consequent expansion of nucleotide repeats during replication by DNA polymerase I and that this action provides insight into the development of agents that interfere with nucleotide expansions found in various disease states.  相似文献   

3.
The purified dimeric form of the Rep protein, a replication initiator protein of the plasmid pSC101, has a low affinity for repeated sequences, iterons, in the replication origin of the plasmid, and higher affinities for two inverted repeats in the operator region of the rep gene resulting in its functioning as an autorepressor. Studies of binding to various synthetic DNA have established that Rep can bind to duplex iteron-sequence carrying open (non-complementary) strands at one end proximal to the rep gene. Open strands at the opposite end of the iteron have no effect on Rep-binding. One open strand seems to be required in a sequence-specific fashion. A randomly sequenced duplex DNA with the open strands cannot bind to Rep but can function as a significant competitor. This suggests that Rep has some affinity for the open strands and forms a stable complex with the adjacent iteron. The mutated Rep protein, Rep1, which causes an increase in the plasmid copy number in vivo, has equally high affinity for the iteron with the open strands as wild type Rep, though it has a lower affinity for the inverted repeats than the wild type. The Rep dimer might bind to these DNA sequences with different modes.  相似文献   

4.
The triplexes formed by pyrimidine alpha-oligodeoxynucleotides, 15mers alpha dT(15) or 12mers alpha dCT having dimethoxyethyl (PNHdiME), morpholino (PMOR) or propyl (PNHPr) non-ionic phosphoramidate linkages with DNA duplex targets have been investigated by UV and FTIR spectroscopy. Due to the decrease in the electrostatic repulsion between partner strands of identical lengths all modifications result in triplexes more stable than those formed with unmodified phosphodiester beta-oligodeoxynucleotides (beta-ODNs). Among the alpha-ODN third strands having C and T bases and non-ionic phosphoramidate linkages (alpha dCTPN) the most efficient modification is (PNHdiME). The enhanced third strand stability of the alpha dCTPN obtained as diastereoisomeric mixtures is attenuated by the steric hindrance of the PMOR linkages or by the hydrophobicity of the PNHPr linkages. All alpha dCTPN strands form triplexes even at neutral pH. In the most favorable case (PNHdiME), we show by FTIR spectroscopy that the triplex formed at pH 7 is held by Hoogsteen T*A.T triplets and in addition by an hydrogen bond between O6 of G and C of the third strand (Tm = 30 degrees C). The detection of protonated cytosines is correlated at pH 6 with a high stabilization of the triplex (Tm = 65 degrees C). While unfavorable steric effects are overcome with alpha anomers, the limitation of the pH dependence is not completely suppressed. Different triplexes are evidenced for non pH dependent phosphoramidate alpha-thymidilate strands (alpha dT(15)PN) interacting with a target duplex of identical length. At low ionic strength and DNA concentration we observe the binding to beta dA(15) either of alpha dT(15)PN as duplex strand and beta dT(15) as third strand, or of two hydrophobic alpha dT(15)PNHPr strands. An increase in the DNA and counterion concentration stabilizes the anionic target duplex and then the alpha dT(15)PN binds as Hoogsteen third strand.  相似文献   

5.
Herein, we report an anomalous electrochemical behavior of surface-bound DNA duplex that has single-base mismatches at its distal end. Single-stranded 15-base DNA was immobilized at its 5'end onto gold electrode surfaces. After hybridization with complementary or mismatched DNA, electrochemical impedance spectra were obtained using [Fe(CN)(6)]3-/4- as redox marker ions. Hybridization with the complementary DNA reduced the charge-transfer resistance (R(CT)), whereas single-base mismatches at the distal end of the duplex largely increased the R(CT). This anomaly was found only with the distal end: the increase in R(CT) was not observed for mismatches at either the middle or the proximal end. These results indicate that electrochemical detection of single-base alterations at an end of sample DNA is exceptionally easy because of the diametrically opposite responses. This detection principle is promising for the typing of single-nucleotide polymorphisms in combination with the single-base primer extension protocol.  相似文献   

6.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

7.
G-G base-paired hairpin DNA structures on template strands offer potential "road-blocks" to a traversing polymerase. Klenow polymerase (exo+) pauses while replicating through G-G base-paired hairpin DNA due to the generation of G-G:C triplex. However, exonuclease-deficient Klenow traverses through de novo generated G-G:C triplexes leading to full-length C:G duplexes. Alleviation of such road-blocks by exo- Klenow ensues faster at lower Mg2+, a kinetic effect consistent with the role of Mg2+ in stabilizing G-G:C triplex fold. The ability of exonuclease-deficient polymerase to go past the de novo generated G-G:C triplexes suggests that the "idling" of exo+ polymerase at G-G road-block is due to the reiterative polymerase/exonuclease action. The full-length replication product carrying a C(n)-G(n) duplex at one end is further "expanded" by exo- Klenow through C-strand "slippage" leading to the generation of C+-G:C triplex, which is exemplified by the premature arrest of the same at low pH that further stabilizes the C+-G:C triplex.  相似文献   

8.
Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between the creation of new heteroduplex DNA and the eventual separation of a third strand, there exists an unusual DNA intermediate that may contain three-stranded regions of natural DNA that are several thousand bases in length.  相似文献   

9.
10.
We have used two-dimensional (1)H NMR spectroscopy at 750 MHz to determine a high-resolution solution structure of an oligonucleotide containing restricted nucleotides with a 2'-O, 4'-C-methylene bridge (LNA) hybridized to the complementary DNA strand. The LNA:DNA duplex examined contained four thymidine LNA modifications (T(L), d(C1T(L)2G3C4T(L)5T(L)6C7T(L)8G9C10):d( G11C12A13G14A15A16G17C 18A19G20). A total relaxation matrix approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Forty final structures were generated for the duplex from A-form and B-form DNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the 40 structures of the complex was 0.6 A. The sugar puckerings are averaged values of a dynamic interchange between N- and S-type conformation except in case of the locked nucleotides that were found to be fixed in the C3'-endo conformation. Among the other nucleotides in the modified strand, the furanose ring of C7 and G9 is predominantly in the N-type conformation whereas that of G3 is in a mixed conformation. The furanose rings of the nucleotides in the unmodified complementary strand are almost exclusively in the S-type conformation. Due to these different conformations of the sugars in the two strands, there is a structural strain between the A-type modified strand and the B-type unmodified complementary strand. This strain is relaxed by decreasing the value of rise and compensating with tip, buckle, and propeller twist. The values of twist vary along the strand but for a majority of the base pairs a value even lower than that of A-DNA is observed. The average twist over the sequence is 32+/-1 degrees. On the basis of the structure, we conclude that the high stability of LNA:DNA duplexes is caused by a local change of the phosphate backbone geometry that favors a higher degree of stacking.  相似文献   

11.
Homologous pairing of single strands with duplex DNA promoted by recA protein occurred without a lag only when the protein was preincubated with ATP and single-stranded DNA. The rate-limiting presynaptic interaction of recA protein and single strands showed a high temperature coefficient: it proceeded 30 times more slowly at 30 degrees C than at 37 degrees C, whereas synapsis showed a normal temperature coefficient. Thus, the presynaptic phase could be separated experimentally from the rest of the reaction by preincubation of single strands with recA protein and ATP at 37 degrees C, followed by a shift to 30 degrees C before double-stranded DNA was added. The presynaptic phase was an order of magnitude more sensitive to inhibition by ADP than was subsequent strand exchange. Presynaptic complexes that were formed at 37 degrees C decayed only slowly at 30 degrees C, but Escherichia coli single strand binding protein caused complexes to form rapidly at 30 degrees C which indicates that single strand binding protein accelerated the rate of formation of complexes. Preincubation synchronized the initial pairing reaction, and further revealed the rapid formation of nascent heteroduplex DNA 250-300 base pairs in length.  相似文献   

12.
DNA sequences d-TGAGGAAAGAAGGT (a 14-mer) and d-CTCCTTTCTTCC (a 12-mer) are complementary in parallel orientation forming either Donahue (reverse Watson-Crick) base pairing at neutral pH or Hoogsteen base pairing at slightly acidic pH. The structure of the complex formed by dissolving the two strands in equimolar ratio in water has been investigated by nmr. At neutral pH, the system forms an ordered antiparallel duplex with five A : T and four G : C Watson-Crick base pairs and three mismatches, namely G-T, A-C, and T-C. The nuclear Overhauser effect cross-peak pattern suggests an overall B-DNA conformation with major structural perturbations near the mismatches. The duplex has a low melting point and dissociates directly into single strands with a broad melting profile. The hydrogen-bonding schemes in the mismatched base pairs have been investigated. It has been shown earlier that in acidic pH, the system prefers a triple-stranded structure with two pyrimidine strands and one purine strand. One of the pyrimidine strands has protonated cytosines, forms Hoogsteen base pairing, and is aligned parallel to the purine strand; the other has nonprotonated cytosines and has base-pairing scheme similar to the one discussed in this paper. The parallel duplex is therefore less stable than either the antiparallel duplex or the triplex, in spite of its perfect complementarity. © 1997 John Wiley & Sons, Inc. Biopoly 41: 773–784, 1997  相似文献   

13.
Short pulses (30 sec at 32 C) of (3)H-thymidine were found primarily in the viral strands of replicating fd deoxyribonucleic acid (DNA), even at a time when most DNA being synthesized was duplex DNA. Much of the labeled viral strand DNA was longer than unit length, but some was shorter than unit length. Most of the corresponding complementary-strand DNA was recovered in closed supercoiled duplex molecules, even for short pulses; the remainder of the complementary-strand DNA was found in replicative intermediates in pieces shorter than unit length. Some of the viral strands in open replicating DNA lacked a corresponding complementary strand.  相似文献   

14.
Three-dimensional structures of the fragile X triplet repeats (GCC)n and (GGC)n are derived by using one- dimensional/two-dimensional NMR. Under a wide range of solution conditions (10-150 mM NaCl,pH6-7)(GCC)5-7 strands form exclusively slipped hairpins with a 3' overhanging C. The slipped hairpins of (GCC)n strands show the following structural characteristics: (i) maximization of Watson-Crick G.C pairs; (ii) formation of C.C mispairs at the CpG steps in the stem; (iii) C2'-endo, anti conformations for all the nucleotides. The ability of (GCC)n strands to form hairpin structures more readily than complementary (GGC)n strands suggests preferential slippage during replication and subsequent expansion of the (GCC)n strands. In addition, the C.C. mispairs at the CpG site of (GCC)n hairpins account for their exceptional substrate efficiencies for human methyltransferase. Gel electrophoresis data show that (GGC)n strands form both hairpin and mismatched duplex structures in 10-150 mM NaCl (ph 6-7) for n < 10, but for n > or + 11 hairpin structures are exclusively present. However, (GGC)n strands remain predominantly in the duplex state for n=4-11 under NMR solution conditions, which require DNA concentrations 100- to 1000-fold higher than in gel electrophoresis. NMR analyses of [(GGC)n]2 duplexes for n=4-6 show the presence of Watson-Crick G.C and mismatched G anti G syn pairs. The mismatches adjacent to the CpG step introduce local structural flexibility in these duplexes. Similar structural properties are also expected in the stem of the hairpins formed by (GGC)n strands.  相似文献   

15.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of abasic lesions at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. The rate of DNA incision was reduced by factors of 350, 250, 60, and 10 when abasic sites replaced the -1N, +1T, +2T, and +4C bases of the scissile strand, but abasic lesions at +5C and +3C had little or no effect. Abasic lesions in the nonscissile strand in lieu of +4G, +3G, +2A, and +1A reduced the rate of cleavage by factors of 130, 150, 10, and 5, whereas abasic lesions at +5G and -1N had no effect. The striking positional asymmetry of abasic interference on the scissile and nonscissile strands highlights the importance of individual bases, not base pairs, in promoting DNA cleavage. The rate of single-turnover DNA religation by the covalent topoisomerase-DNA complex was insensitive to abasic sites within the CCCTT sequence of the scissile strand, but an abasic lesion at the 5'-OH nucleoside (-1N) of the attacking DNA strand slowed the rate of religation by a factor of 600. Nonscissile strand abasic lesions at +1A and -1N slowed the rate of religation by factors of approximately 140 and 20, respectively, and strongly skewed the cleavage-religation equilibrium toward the covalent complex. Thus, abasic lesions immediately flanking the cleavage site act as topoisomerase poisons.  相似文献   

16.
Homo-purine (d-TGAGGAAAGAAGGT) and homo-pyrimidine (d-CTCCTTTCTTCC) oligomers have been designed such that they are complementary in parallel orientation. When mixed in a 1:1 molar ratio, the system adopts an antiparallel duplex at neutral pH with three mismatched base pairs. On lowering the pH below 5.5, a new complex is formed. The NMR results show the coexistence of a intermolecular pyrimidine.purine:pyrimidine DNA triplex and a single stranded oligopurine at this pH. The triplex is stabilized by five T.A:T, four C+.G:C and two mismatched triads, namely, C+.G-T and T.A-C. This triplex is further stabilized by a Hoogsteen C+.G base-pair on one end. Temperature dependence of the imino proton resonances reveals that the triplex dissociates directly into single strands around 55 degrees C, without duplex intermediates. Parallel duplexes are not formed under any of the conditions employed in this study.  相似文献   

17.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures.  相似文献   

18.
Telomerase is a ribonucleoprotein enzyme that adds telomeric sequence repeats to the ends of linear chromosomes. In vitro, telomerase has been observed to add repeats to a DNA oligonucleotide primer in a processive manner, leading to the postulation of a DNA anchor site separate from the catalytic site of the enzyme. We have substituted photoreactive 5-iododeoxypyrimidines into the DNA oligonucleotide primer d(T4G4T4G4T4G2) and, upon irradiation, obtained cross-links with the anchor site of telomerase from Euplotes aediculatus nuclear extract. No cross-linking occurred with a primer having the same 5' end and a nontelomeric 3' end. These cross-links were shown to be between the DNA primer and (i) a protein moiety of approximately 130 kDa and (ii) U51-U52 of the telomerase RNA. The cross-linked primer could be extended by telomerase in the presence of [alpha-32P]dGTP, thus indicating that the 3' end was bound in the enzyme active site. The locations of the cross-links within the single-stranded primers were 20 to 22 nucleotides upstream of the 3' end, providing a measure of the length of DNA required to span the telomerase active and anchor sites. When the single-stranded primers are aligned with the G-rich strand of a Euplotes telomere, the cross-linked nucleotides correspond to the duplex region. Consistent with this finding, a cross-link to telomerase was obtained by substitution of 5-iododeoxycytidine into the CA strand of the duplex region of telomere analogs. We conclude that the anchor site in the approximately 130-kDa protein can bind duplex as well as single-stranded DNA, which may be critical for its function at chromosome ends. Quantitation of the processivity with single-stranded DNA primers and double-stranded primers with 3' tails showed that only 60% of the primer remains bound after each repeat addition.  相似文献   

19.
Two triple helix structures (15-mers containing only T.A-T triplets or containing mixed T.A-T and C.G-C triplets) have been studied by uranyl mediated DNA photocleavage to probe the accessibility of the phosphates of the DNA backbone. Whereas the phosphates of the pyrimidine strand are at least as accessible as in double stranded DNA, in the phosphates of the purine strand are partly shielded and more so at the 5'-end of the strand. With the homo A/T target increased cleavage is observed towards the 3'-end on the pyrimidine strand. These results show that the third strand is asymmetrically positioned along the groove with the tightest triple strand double strand interactions at the 5'-end of the third strand. The results also indicate that homo-A versus mixed A/G 'Hoogsteen-triple helices' have different structures.  相似文献   

20.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号