首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thalamic neuronal projections to the parietal association cortex were investigated in cats applying techniques of retrograde axonal transport of two fluorescent dyes (primuline and fast blue). The dorsal thalamic pulvinar (PL) as well as the dorsal and caudal lateral posterior nucleus (LP) were found to project mainly to the central suprasylvian gyrus (CSSG), while the ventral PL and the ventrorostral LP send out projections to rostral sites of the same gyrus (RSSG). Neurons with dual labeling were found in the PL, LP, suprageniculate, anteroventral, and ventrolateral thalamic nuclei following a single injection of two different markers into the RSSG and CSSG, as well as the centrolateral, paracentral, and centromedial nuclei. Topical organization of sources of cortical projections within the PL-LP complex can apparently provide a high level of discrimination of visual signals by individual cortical units. At the same time, the RSSG and CSSG appear to function in harmony to a considerable extent during integration of information of differing cortical origin; this could point to a lack of differentiation on the part of the RSSG and CSSG, corresponding to feline cortical areas 5 and 7 approximately.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 135–142, March–April, 1991.  相似文献   

2.
Resting membrane potential is a critical parameter determining tonic or bursting mode of the thalamic neurons. Previous studies using whole-cell recordings showed that immature ventroposteriomedial (VPM) and lateral geniculate thalamic neurons are strongly depolarized and have resting membrane potential near ?50 mV. Yet, whole-cell recordings are associated with an introduction of the shunting conductance via the gigaseal that may lead to membrane depolarization in small neurons with high, in the gigaohm range, membrane resistance. Therefore, we have performed measurements of resting potential of VPM neurons in slices obtained from neonatal rats of postnatal days P2-P7 using cell-attached recordings of NMDA channels as voltage sensors. Because currents through the NMDA channels reverse near 0 mV, we assumed that the resting potential should equal the reversal potential of currents through NMDA channels in cell-attached recordings. Analysis of the current-voltage relationships of NMDA currents revealed that the resting potential in the immature VPM neurons is around ?74 mV and that it does not change during the first postnatal week. This suggests that VPM neurons may operate in the bursting mode during the early postnatal period and support the oscillatory activity (spindle-like bursts) in the developing thalamocortical networks.  相似文献   

3.
4.
Mammalian prenatal neocortical development is dominated by the synchronized formation of the laminae and migration of neurons. Postnatal development likewise contains “sensitive periods” during which functions such as ocular dominance emerge. Here we introduce a novel neuroinformatics approach to identify and study these periods of active development. Although many aspects of the approach can be used in other studies, some specific techniques were chosen because of a legacy dataset of human histological data (Conel in The postnatal development of the human cerebral cortex, vol 1–8. Harvard University Press, Cambridge, 1939–1967). Our method calculates normalized change vectors from the raw histological data, and then employs k-means cluster analysis of the change vectors to explore the population dynamics of neurons from 37 neocortical areas across eight postnatal developmental stages from birth to 72 months in 54 subjects. We show that the cortical “address” (Brodmann area/sub-area and layer) provides the necessary resolution to segregate neuron population changes into seven correlated “k-clusters” in k-means cluster analysis. The members in each k-cluster share a single change interval where the relative share of the cortex by the members undergoes its maximum change. The maximum change occurs in a different change interval for each k-cluster. Each k-cluster has at least one totally connected maximal “clique” which appears to correspond to cortical function.  相似文献   

5.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

6.
Unit activity of the lumbar interneurons was recorded in thalamic cats during fictitious locomotion. Neurons whose activity was modulated in the rhythm of fictitious locomotion were found in the lateral parts of the intermediate zone of gray matter and ventral horn. Of these neurons, 41.2% were activated mainly in the phase of "flexion," 48.5% in the phase of extension, and 10.3% in both phases. Neurons with tonically increasing or decreasing activity during rhythmic discharges and neurons whose activity was unchanged during fictitious locomotion also were observed. During later discharges all these neurons were similarly activated, although a depth of modulation of unit activity was lower than during fictitious locomotion. Afferent inputs to the recorded interneurons also were studied. The neuronal organization of the spinal locomotor generator is discussed on the basis of these results.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 329–338, July–August, 1979.  相似文献   

7.
Reactions of neurons of area 7 in the parietal association cortex to paired stimulation of the dorsolateral and posteriolateral thalamic nuclei were investigated using methods of extra- and intracellular recording. It was found that conditioning stimulation of association nuclei caused inhibition or facilitation of the test response; in some cases, the effect was indeterminant. Inhibition frequently led to other types of reactions. Inhibition of response to the test stimulus was pronounced during the initial period of IPSP, but facilitation of the response was possible during the repolarization phase. There was no inhibition of test responses when the chloride component of the IPSP was reversed. It is suggested that inhibition of responses to the test stimulus takes place in the presence of an inward chloride current and that facilitation of responses to such a stimulus may be due to increased effectiveness of late EPSPS.I. I. Mechnikov State University, Odessa. Translated from Neurofiziologiya, Vol. 24, No. 2, pp. 198–207, March–April, 1992.  相似文献   

8.
9.
10.
11.
The weight of all bones and the length of humeri, radii, femora and tibiae have been determined in a series of 150 dry, fat-free skeletons from American Whites and Negroes of both sexes, ranging in age from 23 days to 22 years. Six skeletons were eliminated from the series because of evidence of previous illness. A comparison of the lengths of femur plus tibia of this series with the mean statures of a large series of living children at given ages indicates similarity in the growth patterns. Statistical analyses of the data show that the skeletal weight cannot be estimated reliably from age by cither an exponential growth equation or by a logistic function. The weight of the skeleton, however, is related to the lengths of the measured limb bones by allometric equations, and such equations involving each of the four bones are presented for estimation of skeletal weight in the living. Although the standard errors of estimate of the equations based on lengths of each of these four bones differ very little, the radius is recommended over the other three because it is more readily accessible in the living for a roentgenogram and its shadow on the film shows least distortion.  相似文献   

12.
GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.  相似文献   

13.
Norepinephrine has been suggested to play a neurotrophic role during development and is present in the brain as early as embryonic day (E) 12. We have recently demonstrated that the alpha2A adrenoceptor subtype is widely expressed during times of neuronal migration and differentiation throughout the developing brain. Here, we report the temporal and spatial expression pattern of alpha2A adrenoceptors in neocortex during late embryonic and early postnatal development using in situ hybridization and receptor autoradiography. Functional alpha2 receptors in embryonic rat cortex were also detected using agonist stimulated [35S]GTPgammaS autoradiography. Both alpha2A mRNA and protein expression were strongly increased by E19 and E20, respectively. The increased expression was in the cortical plate and intermediate and subventricular zones, corresponding to tiers of migrating and differentiating neurons. This transient up-regulation of alpha2A adrenoceptors was restricted to the lateral neocortex. At E20, functional alpha2 adrenoceptors were also detected in deep layers of lateral neocortex. During the first week of postnatal development, the expression of alpha2A mRNA and protein changed markedly, giving rise to a more mature pattern of anatomical distribution. The temporal and spatial distribution of alpha2A adrenoceptors in developing neocortex is consistent with expression of functional proteins on migrating and differentiating layer IV to II neurons. These findings suggest that alpha2A receptors may mediate a neurotrophic effect of norepinephrine during fetal cortical development. The early delineation of the lateral neocortex, which will develop into somatosensory and auditory cortices, suggests an intrinsic regulation of alpha2A mRNA expression.  相似文献   

14.
15.
Activity of lumbar spinal neurons was recorded extracellularly during late long-lasting discharges in efferent nerves in immobilized thalamic cats. Of the total number of cells tested, 70% changed their activity during late discharges. The activity of 35% of neurons was increased during late discharges in nerves to flexors, but inhibited during discharges in nerves to extensors. Responses of 27% of neurons were of the opposite character. Other neurons were found whose activity was increased (5%) and reduced (3%), respectively, during later discharges in both flexor and extensor nerves. Most interneurons which changed their activity during late discharges were located in lateral parts of the intermediate zone of gray matter and the ventral horn at a depth of 2.8 mm. The character of the afferent input to a neuron was found to depend on the late efferent discharges and activity of the neurons correlated with them. Neurons whose activity was unchanged during late discharges (30%) were mainly located rather more dorsally, at a depth of about 2.0 mm. The possible mechanisms of the participation of these groups of interneurons in the generation of late discharges are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 236–244, May–June, 1979.  相似文献   

16.
Tangential migration in neocortical development   总被引:8,自引:0,他引:8  
During cortical development, different cell populations arise in the basal telencephalon and subsequently migrate tangentially to the neocortex. However, it is not clear whether these cortical cells are generated in the lateral ganglionic eminence (LGE), the medial ganglionic eminence (MGE), or both. In this study, we have generated a three-dimensional reconstruction to study the morphological formation of the two ganglionic eminences and the interganglionic sulcus. As a result, we have demonstrated the importance of the development of these structures for this tangential migration to the neocortex. We have also used the tracers DiI and BDA in multiple experimental paradigms (whole embryo culture, in utero injections, and brain slice cultures) to analyze the routes of cell migration and to demonstrate the roles of both eminences in the development of the cerebral cortex. These results are further strengthened, confirming the importance of the MGE in this migration and demonstrating the early generation of tangential migratory cells in the LGE early in development. Finally, we show that the calcium-binding protein Calretinin is expressed in some of these tangentially migrating cells. Moreover, we describe the spatiotemporal sequence of GABA, Calbindin, and Calretinin expression, showing that these three markers are expressed in the cortical neuroepithelium over several embryonic days, suggesting that the cells migrating tangentially form a heterogeneous population.  相似文献   

17.
Responses of 92 neurons of the reticular (R) and 105 neurons of the ventral anterior (VA) thalamic nuclei to stimulation of the ventrobasal complex (VB) and the lateral (GL) and medial (GM) geniculate bodies were investigated in cats immobilized with D-tobocurarine. Altogether 72.2% of R neurons and 76.2% of VA neurons responded to stimulation of VB whereas only 15.0% of R neurons and 27.1% of VA neurons responded to stimulation of GM and 10.2% of R neurons and 19.6% of VA neurons responded to stimulation of GL. The response of the R and VA neurons to stimulation of the relay nuclei as a rule was expressed as excitation. A primary inhibitory response was observed for only two R and three VA neurons. Two types of excitable neurons were distinguished: The first respond to afferent stimulation by a discharge consisting of 5–15 spikes with a frequency of 250–300/sec; the second respond by single action potentials. Neurons of the first type closely resemble inhibitory interneurons in the character of the response. Antidromic responses were recorded from 2.2% of R neurons and 7.8% of VA neurons during stimulation of the relay nuclei. Among the R and VA neurons there are some which respond to stimulation not only of one, but of two or even three relay nuclei. If stimulation of one relay nucleus is accompanied by a response of a R or VA neuron, preceding stimulation of another nucleus leads to inhibition of the response to the testing stimulus if the interval between conditioning and testing stimuli is less than 30–50 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 597–605, November–December, 1976.  相似文献   

18.
Multihormonal regulation of hepatic histidase during postnatal development   总被引:1,自引:0,他引:1  
M Feigelson 《Enzyme》1973,15(1):169-197
  相似文献   

19.
We analyzed the fiber-type composition of the soleus muscle in rats and mice to determine whether the adult proportion of fiber types is fixed soon after birth or whether it changes during postnatal maturation. We examined muscles from animals varying in age from 1 week to 1 year using monoclonal antibodies that distinguish between fast and slow isoforms of myosin heavy chains. In cross sections of unfixed muscle containing profiles of all myofibers in the muscle, we counted the fibers that stained with antibodies to fast myosin, and in adjacent sections, those that stained positive with an antibody to slow myosin. We also counted the total number of fibers in each section. Rat soleus contained about 2500 myofibers, and mouse about 1000 at all ages studied, suggesting that myogenesis ceases in soleus by 1 week after birth or sooner. In mouse soleus, the relative proportions of fibers staining positive with fast and slow myosin antibodies were similar at all ages studied, about 60%–70% being fast and 30%–40% slow. In rat soleus, however, the proportions of fast antibody-positive and slow antibody-positive fibers changed dramatically during postnatal maturation. At 1 week after birth, about 50% of rat soleus fibers stained with fast myosin antibodies, whereas between 1 and 2 months this value fell to about 10%. In mouse, about 10% of fibers at 1 week, but none at 1 year, reacted with both fast and slow antibodies, whereas in rat, fewer than 3% bound both antibodies to a significant degree at 1 week. It is puzzling why, in rat soleus, the majority of apparently fast fibers present at 1 week is converted to a slow phenotype, whereas in mouse soleus the predominant change appears to be the suppression of fast myosin expression in a subset of fibers that expresses both myosin types at 1 week. It is possible that this may be related to differences in size and the amount of body growth between these two species.  相似文献   

20.
The postnatal development of the gerbil vagina has been investigated and special attention has been paid to the luminal surface epithelium structures. Different types of microvilli and solitary cilia are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号