首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two types of oligonucleotide derivatives which are substituted by P(V) porphyrin at the phosphorus atom of an internucleotidic linkage and at the 5'-terminal internucleotidic linkage via a spacer were synthesized (Fig. 1), and hybridization capabilities of them with complementary oligonucleotides were evaluated. A novel method for a sensing of oligonucleotide by the fluorescence quenching via photo-induced electron transfer between the P(V) porphyrin labeled oligonucleotide and pyrene-labeled one on the oligonucleotide template is reported.  相似文献   

2.
Oligonucleotide derivatives with a fluorescent dye were designed for exhibiting a measurable signal only when they bind to complementary DNA in aqueous solution. The oligonucleotide with a dansyl group at the specific 2'-sugar residue was synthesized by using the protected 2'-dansylaminouridine phosphorobisamidite. The dansyl-oligonucleotide conjugate binds to its complementary DNA to form duplex with a normal stability and exhibits enhanced fluorescence together with a blue-shift in emission maxima after the hybridization. Another possible candidate involved the use of pyrene-excimer emission upon forming ternary complex between two pyrene-labeled oligonucleotide probes with target DNA. A new and general method for introduction of a pyrene fluorophore into the 3'- or 5'-terminal hydroxyl group of oligonucleotides via different linkers was developed.  相似文献   

3.
M E Jones  B R Lentz 《Biochemistry》1986,25(3):567-574
Pyrene-labeled phospholipids have been used to test for the existence of lateral domains due to temperature-induced phase separations and binding of prothrombin fragment 1 to charged lipid vesicles. When in close proximity, pyrene-containing probes can exchange excited-state energy to form excimers; the ratio of the excimer to monomer fluorescence intensity (E/M) is proportional to the local concentration of probe in the membranes, as well as to the excimer lifetime and the probe's lateral diffusion coefficient. The ability of the pyrene-labeled phospholipids to quantitatively report the coexistence of multiple environments was demonstrated in dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylcholine multilamellar vesicle preparations of varying compositions, each of which contained coexisting fluid and gel phases. In this system, pyrene-labeled phosphatidylcholine was found to favor the fluid relative to the gel phase with a partition coefficient of 7. At 37 degrees C, in dioleoylphosphatidylglycerol (DOPG)/palmitoyloleoylphosphatidylcholine (POPC) large, unilamellar vesicles containing either pyrene-labeled phosphatidylglycerol (py-PG) or pyrene-labeled phosphatidylcholine (py-PC), the excimer lifetime (37 ns) and the lateral diffusion constant of the probe (5.8 X 10(-8) cm2/s) were independent of the membrane composition and the presence of fragment 1 and Ca2+. Consequently, E/M was directly proportional to only the local concentration of the py-PG or py-PC probes. When saturating amounts of fragment 1 and 5 mM Ca2+ were added to DOPG/POPC vesicles that contained either probe, no change in E/M and hence the local probe concentration was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Chen G  Felgner PL  Guan Z 《Biomacromolecules》2008,9(7):1745-1754
Here we present an efficient synthesis of functional dendritic polymers carrying internal fluorescence labels for bioconjugation. Specifically, dendritic polymers having pyrene as fluorescence label in the core and N-hydroxysuccinimide (NHS) functional groups at the periphery were synthesized by coupling heterobifunctional PEG to hydroxyl functionalized dendritic polyethylene core. The dendritic polyethylene cores containing one pyrene label per polymer molecule were prepared through a one-step transition-metal-catalyzed polymerization using a pyrene-labeled Pd(II)-alpha-diimine chain walking catalyst. A series of pyrene-labeled dendritic scaffolds were obtained with different molecular weights and sizes. NHS active end groups were introduced to the periphery of the dendritic scaffolds through end-group functionalization. Those NHS-functionalized dendritic scaffolds were successfully used to conjugate a model protein, ovalbumin, to yield protein-polymer conjugates carrying multiple copies of protein attached to each scaffold.  相似文献   

5.
Calponin, an actin-linked regulatory protein in smooth muscle, caused a remarkable change in the fluorescence intensity of pyrene-labeled actin in the filamentous form. Calponin, an equimolar ratio to actin, decreased the fluorescence intensity of pyrene-labeled F-actin by some 60% to the level near monomeric actin. This change was partially reversed by Ca2+, when calmodulin was present. Thus it appears that calponin causes conformational changes in actin molecules in an actin filament so as to inhibit their interactions with myosin.  相似文献   

6.
An actin-interacting heptapeptide in the cofilin sequence   总被引:7,自引:0,他引:7  
Cofilin, a 21-kDa actin-binding protein, has a hexapeptide sequence DAIKKK which is identical to the N-terminal portion (residues 2-7) of tropomyosin. The synthetic heptapeptide, DAIKKKL, corresponding to residues 122-128 of cofilin, inhibited the binding of cofilin to F-actin in a dose-dependent manner. The heptapeptide cosedimented with F-actin, decreased the fluorescence intensity of pyrene-labeled F-actin, and increased the rate of polymerization of G-actin. The hexapeptides, DIKKKL and DAIKKL, also inhibited the binding of cofilin to F-actin and affected the fluorescence intensity of pyrene-labeled F-actin and the rate of actin polymerization, like the heptapeptide. However, their effects were weaker than those of the heptapeptide. Moreover, the pentapeptide, DIKKL, had little or no effect. These results suggest that the heptapeptide sequence is specific for the interaction with actin and, therefore, may constitute part of the actin-binding domain of cofilin.  相似文献   

7.
The electrochemistry of DNA films modified with different redox probes linked to DNA through saturated and conjugated tethers was investigated. Experiments feature two redox probes bound to DNA on two surfaces: anthraquinone (AQ)-modified uridines incorporated into thiolated DNA on gold (Au) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-modified uridines in pyrene-labeled DNA on highly oriented pyrolytic graphite (HOPG). The electrochemistry of these labels when incorporated into DNA has been examined in DNA films containing both well matched and mismatched DNA. DNA-mediated electrochemistry is found to be effective for the TEMPO probe linked with an acetylene linker but not for a saturated TEMPO connected through an ethylenediamine linker. For the AQ probe, DNA-mediated electrochemistry is found with an acetylene linker to uridine but not with an alkyl chain to the 5' terminus of the oligonucleotide. Large electrochemical signals and effective discrimination of intervening base mismatches are achieved for the probes connected through the acetylene linkages, while probes connected through saturated linkages exhibit small electrochemical signals associated only with direct surface to probe charge transfer and poor mismatch discrimination. Thus DNA electrochemistry with these probes is dramatically influenced by the chemical nature of their linkage to DNA. These results highlight the importance of effective coupling into the pi-stack for long-range DNA-mediated electrochemistry.  相似文献   

8.
Recently, it was demonstrated that gamma-cyclodextrins (gamma-CDs) greatly accelerates transfer of hydrophobic pyrene-labeled and other fluorescent phospholipid derivatives from vesicles to cells in culture (). To understand better the characteristics of this process, we studied the interaction of gamma-CD with pyrene-labeled phosphatidylcholines (PyrPCs) using a variety of physical methods. Either one or both of the acyl chains of PC was labeled with a pyrene moiety (monoPyrPCs and diPyrPCs, respectively), and the length of the labeled chain(s) varied from 4 to 14 carbons. Fluorescent binding assays showed that the association constant decreases strongly with increasing acyl chain length. PyrPC/gamma-CD stoichiometry was 1:2 for the shorter chain species, but changed to 1:3 when the acyl chain length exceeded 8 (diPyrPCs) or 10 (monoPyrPCs) carbons. The activation energy for the formation of diPyr(10)PC/gamma-CD complex was high, i.e., +92 kJ/mol, indicating that the phospholipid molecule has to fully emerge from the bilayer before complex formation can take place. The free energy, enthalpy, and entropy of transfer of monoPyrPC from bilayer to gamma-CD complex were close to zero. The absorption, Fourier transform infrared, and fluorescence spectral measurements and lifetime analysis indicated that the pyrene moiety lies inside the CD cavity and is conformationally restricted, particularly when the labeled chain is short. The acyl chains of a PyrPC molecule seem to share a CD cavity rather than occupy different ones. The present data provide strong evidence that the ability of gamma-CD to enhance intermembrane transfer of pyrene-labeled phospholipids is based on the formation of stoichiometric complexes in the aqueous phase. This information should help in designing CD derivatives that are more efficient lipid carriers then those available at present.  相似文献   

9.
To probe adriamycin-phospholipid interactions, the effects of this cytotoxin on the hydrolysis of a pyrene-labeled acidic alkyl-acyl phospholipid analog 1-octa-cosanyl-2-(6-pyren-1-yl)hexanoyl-sn-glycero-3-phos p hatidylmethanol (C28-O-PHPM) by porcine pancreatic phospholipase A2 (PLA2) were studied. In the absence of added Ca2+ adriamycin caused a 3-4-fold activation of hydrolysis of this pyrenelipid whereas an inhibition of action of PLA2 on the corresponding phosphatidylcholine derivative C28-O-PHPC was observed. Under similar conditions adriamycin also enhanced the rate of hydrolysis of the pyrene-labeled diacyl lipid 1-palmitoyl-2-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphatidylgly cer ol and inhibited the hydrolysis of PLA2 on the phosphatidylcholine derivative. Increasing calcium concentrations abolished the activating and most of the inhibitory effects of adriamycin with the above phospholipid substrates. Quenching of pyrene excimer fluorescence by adriamycin revealed efficient binding of the drug to acidic lipids. Addition of 1 mM calcium reduced fluorescence quenching by adriamycin maximally by approximately 90%. In comparison, quenching by adriamycin of pyrene-labeled phosphatidylcholine was much weaker and calcium had only an insignificant effect. Monolayer experiments at an air/water interface showed a rapid and surface pressure-dependent penetration of the drug into a film of C28-O-PHPM. Increase in surface pressure was reversed by 80% by the inclusion of 1 mM Ca2+ into the subphase. Penetration of adriamycin into a monolayer of C28-O-PHPC was much weaker. In agreement with earlier studies two types of binding of adriamycin to C28-O-PHPM are proposed.  相似文献   

10.
By use of the excimer technique, the formation in aqueous solution of pyrene-labeled ganglioside micelles and their lateral diffusion and distribution in phosphatidylcholine membranes were investigated. For these studies 12-(1-pyrenyl)dodecanoic acid was covalently attached to the ceramide part of lysogangliosides GM1, GM2, GM3, GD1a, and GD1b. The 12-(1-pyrenyl)dodecanoic acid substitute of phosphatidylcholine was used for comparison. All pyrene-labeled gangliosides were present in aqueous solution in a predominantly micellar form down to 2 X 10(-8) M, which is the technical limit of this method. The tendency to aggregate is highest for PyGD1a and PyGD1b. In fluid dipalmitoylphosphatidylcholine bilayers the excimer-to-monomer fluorescence intensity ratio of pyrene-labeled gangliosides PyGM1, PyGM2, PyGM3, PyGD1a, and PyGD1b increases linearly with ganglioside concentration. The calculated diffusion coefficients for gangliosides are comparable to 1.6 X 10(-7) cm2/s, which is the diffusion coefficient of pyrene-labeled phosphatidylcholine [Galla, H.-J., & Hartmann, W. (1980) Chem. Phys. Lipids 27, 199-219]. In comparison to phosphatidylcholine, the diffusion of monosialogangliosides is slightly increased, with that diffusion of disialogangliosides being slightly decreased. Ca2+ ions up to 200 mM do not affect ganglioside diffusion significantly. The shape of the lipid phase transition curves obtained by the excimer technique yields information on the lateral distribution of the tested probe molecules. Pyrene-labeled phosphatidylcholine was taken as reference for a system with complete miscibility but nonideal mixing. 1-Acyl-2-[10-(1-pyrenyl)decanoyl]-sn-glycero-3-phosphocholine (PyPC) is known to be randomly distributed in the gel and in the fluid-crystalline lipid phase of dipalmitoylphosphatidylcholine bilayer membranes. It distributes preferentially into the fluid phase in the phase-transition region. In comparison, PyPC in dimyristoylphosphatidylcholine membranes is an example of a system with nearly ideal mixing [Hresko, R. C., Sugar, J. P., Barenholz, Y., & Thompson, T. E. (1986) Biochemistry 25, 3813-3828]. Phase-transition curves of pyrene-labeled gangliosides exemplify a nearly ideal mixing system with PyGD1a or PyGD1b producing best effects. The monosialogangliosides, however, exhibit less ideality of mixing, the deviation from an ideal mixing behavior increasing with decreasing number of both neutral sugar residues and sialic acid groups. Addition of Ca2+ triggers a tightening of the phosphatidylcholine bilayer and thus induces a change in the lateral distribution of the gangliosides at the phase transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

12.
Properties of a specific glycolipid transfer protein from bovine brain   总被引:4,自引:0,他引:4  
A transfer protein specific for glycolipids has been isolated from bovine brain. As judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, the protein is 68% pure and has a molecular weight of 20 000. Three different assays were employed to study the protein's specificity and glycolipid binding properties. The protein transferred several different neutral glycosphingolipids and ganglioside GM1 equally well, but failed to accelerate phosphatidylcholine or sphingomyelin intervesicular movement. The protein's ability to interact with glycolipids was strongly influenced by the physical properties of the matrix phospholipid in which the glycolipids reside. Both the phase state of the phospholipid matrix and bilayer curvature affected glycolipid intervesicular transfer rates. Protein binding to phospholipid vesicles containing either tritium-labeled or pyrene-labeled glucosylceramide could not be demonstrated by density gradient centrifugation or fluorescence energy transfer measurements, respectively. A specific association of the transfer protein for pyrene-labeled glucosylceramide was found when the fluorescence emission of the pyrene excimer-to-monomer ratio was measured suggesting that a portion of the fluorescent glycolipid was being sequestered from the phospholipid vesicles and was binding to the freely soluble protein.  相似文献   

13.
A novel and sensitive biosensor based on aptamer and pyrene-labeled fluorescent probes for the determination of K+ was developed. The aptamer was used as a molecular recognition element and a partially complementary oligonucleotide with the aptamer was labeled by pyrene moieties at both ends to transduce the binding event of K+ with aptamer. In the presence of K+, the complementary oligonucleotides were displaced from aptamers, which was accompanied by excimer fluorescence of pyrenes because the self-hairpin structure of the complementary oligonucleotide brought pyrene moieties into close proximity. However, it gave only monomer emission in the absence of K+. Under optimum conditions, the relative fluorescence intensity of pyrene was proportional to the concentration of K+ in the range of 6.0 × 10−4 to 2.0 × 10−2 M. A detection limit of 4.0 × 10−4 M was achieved. Moreover, this method was able to detect K+ with high selectivity in the presence of Na+, , Mg2+, and Ca2+ ions of biological fluids. In brief, the assay may have great potential applications, especially in a biological environment because of its simplicity, sensitivity, and specificity.  相似文献   

14.
Properties of 2'-O-methyloligoribonucleotides containing 2'-O-(1-pyrenylmethyl)uridine were investigated as the fluorescent probe to search the single strand regions on RNA secondary and tertiary structure. The pyrene-labeled 2'-O-methyloligoribonucleotide (OMUpy) showed remarkable increase of fluorescence intensity to 333-fold at 375 nm when hybridized with the complementary oligoribonucleotide. When OMUpy, complementary to loop or stem regions, was applied to E. coli 5S-rRNA, the fluorescence intensities were increased in a sequence specific manner. The difference of the fluorescence intensities corresponds to the higher-order structure of 5S-rRNA, suggesting that pyrene-labled 2'-O-methyloligoribonucleotide can be applicable to search single strand regions of RNA.  相似文献   

15.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

16.
Monovalent cation-induced fusion of acidic phospholipid vesicles   总被引:1,自引:0,他引:1  
Fusion of small unilamellar vesicles (SUV) consisting of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and phosphatidylglycerol (PG) from egg yolk, dipalmitoylphosphatidylserine (DPPS) and phosphatidylserine (PS) from bovine brain was studied as a function of monovalent cation concentration. Fusion was detected by measuring the changes in the excimer to monomer fluorescence intensity ratio (IE/M) of pyrene-labeled phospholipid analogues upon fusion of the pyrene-labeled and unlabeled vesicles. No fusion was observed from vesicles consisting of DMPC, PS from bovine brain or PG from egg yolk upon addition of NaCl (up to 1 M). However, considerable fusion was evident for vesicles consisting of DMPG or DPPS upon addition of monovalent cations (300 mM to 1 M). Fusion kinetics were fast reaching a plateau after 5 min of addition of cations. The order of efficiency of different monovalent cations to induce the fusion of DMPG vesicles as judged by the changes of the IE/M ratio was Li+ greater than Na+ greater than K+ greater than Cs+. DSC-scan of sonicated DMPG vesicles showed, in the absence of salt, a phase transition at 19.2 degrees C with enthalpy of 1.1 kcal.mol-1. After incubation in the presence of 600 mM NaCl the DSC scan showed a narrow phase transition at 24.1 degrees C with enthalpy of 6.9 kcal.mol-1 and a pronounced pretransition, both supporting that the fusion of the vesicles had occurred in the presence of NaCl. The results indicate that sonicated vesicles consisting of acidic phospholipids with fully saturated fatty acids fuse in the presence of monovalent cations, whereas those containing unsaturated fatty acids do not.  相似文献   

17.
This article reviews the use of fluorescent lipids and free probes in the studies of lipid regular distribution in model membranes. The first part of this article summarizes the evidence and physical properties for lipid regular distribution in pyrene-labeled phosphatidylcholine (PC)/unlabeled PC binary mixtures as revealed by the fluorescence of pyrene-labeled PC. The original and the extended hexagonal superlattice model are discussed. The second part focuses on the fluorescence studies of sterol regular distributions in membranes. The experimental evidence for sterol superlattice formation obtained from the fluorescent sterol (i.e. dehydroergosterol) and non-sterol fluorescent probes (e.g. DPH and Laurdan) are evaluated. Prospects and concerns are given with regard to the sterol regular distribution. The third part deals briefly with the evidence for polar headgroup superlattices. The emphasis of this article is placed on the new concept that membrane properties and activities, including the activities of surface acting enzymes, drug partitioning, and membrane free volume, are fine-tuned by minute changes in the concentration of bulky lipids (e.g. sterols and pyrene-containing acyl chains) in the vicinities of the critical mole fractions for superlattice formation.  相似文献   

18.
The influence of cholesterol on the assembly and structure of model high-density lipoproteins (HDL) has been investigated. Model HDL composed of apolipoprotein A-I (apoA-I) and 1,2-dimyristoylphosphatidylcholine (DMPC) formed spontaneously at the transition temperature (Tc) of the lipid. Those composed of apoA-I and 1-palmitoyl-2-oleoylphosphatidylcholine were formed by a cholate dialysis method. At low cholesterol/phospholipid ratios both lipids and assembly methods yielded a model HDL whose composition was identical with that of the initial mixture; as the cholesterol/phospholipid ratio of the initial mixture was increased, the fraction of cholesterol appearing in the model HDL decreased, and a negative correlation between the cholesterol and protein contents of the model HDL was observed. At high cholesterol/phospholipid ratios the association of apoA-I and phospholipids appeared to be thermodynamically unfavorable. The effects of cholesterol content on the thermal properties of a model HDL composed of DMPC and apoA-I were further investigated by differential scanning calorimetry, fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, fluorescence energy transfer, and excimer fluorescence of pyrenyl derivatives of phosphatidylcholine (PC) and cholesterol. The addition of cholesterol decreased the transition enthalpy of DMPC, raised the midpoint of the transition, and modulated motional freedom in the phospholipid matrix. The amount of cholesterol required to produce these effects was lower in the model HDL than in multilamellar liposomes. In a model HDL composed of DMPC and apoA-I, the lateral diffusion of a pyrene-labeled cholesterol was dramatically changed at the Tc whereas little change was observed in that of a pyrene-labeled PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of alpha-tocopherol on the lipid fluidity of porcine intestinal brush-border membranes was studied using pyrene as a fluorescent probe. Addition of alpha-tocopherol to the medium decreased fluorescence intensity and lifetime, but increased the fluorescence polarization of pyrene-labeled membranes. beta-, gamma-, and delta-Tocopherols gave no appreciable effect on the fluorescence intensity and polarization of the complex. The apparent dissociation constant (3.1 +/- 0.12 microM) of the interaction of alpha-tocopherol with the membranes, estimated from the change in the fluorescence intensity with varying concentrations of alpha-tocopherol, was in good agreement with the concentration required to cause the half-maximal inhibition of lipid peroxidation of the membranes performed by incubation with 100 microM ascorbic acid and 10 microM Fe2+. Decrease of the slope in the thermal Perrin plot of the polarization of pyrene-labeled membranes by alpha-tocopherol suggests that the movement of pyrene molecules in the membranes is restricted by binding of the tocopherol. This interpretation was confirmed by an increased harmonic mean of the rotational relaxation time of the dye molecules in the membranes from 10.9 +/- 0.16 to 18.5 +/- 0.51 microseconds after addition of 25 microM alpha-tocopherol to the medium. The perturbation of lipid phase in the membranes induced by alpha-tocopherol was also suggested from a decreased quenching rate constant of pyrene fluorescence in the membranes for Tl+. Based on these results, the effect of alpha-tocopherol on the lipid fluidity of the membranes is discussed.  相似文献   

20.
Modifications of existing methods have allowed for the isolation and purification of various species of plasma glycosaminoglycans on the basis of their sulfate content and molecular size. All of the preparations precipitated human plasma low density lipoproteins (LDL); maximal precipitation occurred with amounts of glycans corresponding to 50 mug of hexuronate and 12 mg of LDL. The interaction of glycans with pyrene-labeled lipoproteins was also studied, measuring variations of the fluorescence emitted by the monomer (M) and excimer (E) species of the bound pyrene. The ratio IE/IM is proportional to c/eta, where c is the microscopic concentration of the pyrene confined to the hydrocarbon region of the lipoprotein and eta is the microviscosity of that region. To 0.12 mg of pyrene-labeled LDL, very low density lipoproteins (VLDL) or high density lipoproteins (HDL) were added increasing amounts of the various glycan preparations. The sulfate-rich species decreased the IE/IM ratio of LDL and HDL but not that of VLDL. This finding suggests that the glycan caused a change in lipoprotein conformation associated with either an increased volume or increased microscopic viscosity of the hydrocarbon region. The modification of LDL conformation could be prevented by proteolytic treatment of the sulfate-rich species or by addition to the system of suitable amounts of sulfate-poor species or of chrondroitin-4-sulfate, but could not be prevented by increased ionic concentration. These results suggest that the two main species of plasma glycans are important in maintaining adequate rheological properties of plasma lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号