首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial hematuria (FH) is explained by at least four different genes (see below). About 50% of patients develop late proteinuria and chronic kidney disease (CKD). We hypothesized that MYH9/APOL1, two closely linked genes associated with CKD, may be associated with adverse progression in FH. Our study included 102 thin basement membrane nephropathy (TBMN) patients with three known COL4A3/COL4A4 mutations (cohort A), 83 CFHR5/C3 glomerulopathy patients (cohort B) with a single CFHR5 mutation and 15 Alport syndrome patients (cohort C) with two known COL4A5 mild mutations, who were categorized as “Mild” (controls) or “Severe” (cases), based on renal manifestations. E1 and S1 MYH9 haplotypes and variant rs11089788 were analyzed for association with disease phenotype. Evidence for association with “Severe” progression in CFHR5 nephropathy was found with MYH9 variant rs11089788 and was confirmed in an independent FH cohort, D (cumulative p value = 0.001, odds ratio = 3.06, recessive model). No association was found with APOL1 gene. Quantitative Real time PCR did not reveal any functional significance for the rs11089788 risk allele. Our results derive additional evidence supporting previous reports according to which MYH9 is an important gene per se, predisposing to CKD, suggesting its usefulness as a prognostic marker for young hematuric patients.  相似文献   

2.
The enzymes of the 17β-hydroxysteroid dehydrogenase (17β-HSD) gene family are responsible for a key step in the formation and degradation of androgens and estrogens: catalyzing the interconversion of 17-ketosteroids and their active 17β-hydroxysteroid counterparts. The structure of human type II 17β-HSD cDNA was recently reported. This enzyme catalyzes the interconversion of Δ4-androstenedione and testosterone, androstanedione and dihydrotestosterone, and estrone and 17β-estradiol, whereas type I 17β-HSD catalyzes exclusively the interconversion of estrogens. To locate the HSD17B2 gene, the novel dinucleotide CA repeat sequence found 571 bp downstream from the end of exon 1 was genotyped into eight CEPH reference families by PCR. Two-point linkage analysis was performed between the latter polymorphism and the 2066 microsatellite markers of Généthon. The maximal pairwise lod score (Zmax = 33.3) with a maximal recombination fraction (θmax) of 0.008 was obtained with the marker D16S422 located on 16q24.1–q24.2. To define further the localization of the HSD17B2 gene, we constructed a high-resolution genetic map of the region flanking the polymorphic HSD17B2 gene including eight Généthon markers. The order of the HSD17B2 gene and markers is qter-D16S516 — D16S504 — D16S507 — D16S505 — D16S511 — [HSD17B2—D16S422]—D16S520—D16S413—tel.  相似文献   

3.
Von Hippel-Lindau disease is a heritable tumour syndrome caused by the loss of the function of a tumour suppressor gene on the short arm of human chromosome 3. The interval RAF1-D3S18 (3p25–3p26) has been identfied by genetic linkage studies to harbour the von Hippel-Lindau gene. We have constructed a long range restriction map of this region and have succeeded in demonstrating the physical linkage of loci D3S726 (DNA probe LIB31-38), D3S18 (c-LIB-1, L162E5), D3S601 (LIB1963) and D3S587 (LIB 12–48). Since multipoint analysis has located D3S601 proximal to D3S726, the physical map should be oriented with D3S726 towards the telomere. The order and distances of probes within the von Hippel-Lindau gene region is as follows: telomere — LIB3138 — (<280 kb) — c-LIB-1 — (overlapping) — L162E5 — (900–1600 kb) — (LIB 19-63, LIB 12–48) — centromere. In tissues that included blood, semen and Epstein-Barrvirus-transformed lymphocytes, we detected a putative CpG island flanking D3S18.  相似文献   

4.
Mutations in the COL4A5 gene, located at Xq22, cause Alport syndrome (AS), a nephritis characterized by progressive deterioration of the glomerular basement membrane and usually associated with progressive hearing loss. We have identified a novel mutation, L1649R, present in 9 of 121 independently ascertained families. Affected males shared the same haplotype of eight polymorphic markers tightly linked to COL4A5, indicating common ancestry. Genealogical studies place the birth of this ancestor >200 years ago. The L1649R mutation is a relatively common cause of Alport syndrome in the western United States, in part because of the rapid growth and migratory expansion of mid-nineteenth-century pioneer populations carrying the gene. L1649R affects a highly conserved residue in the NC1 domain, which is involved in key inter- and intramolecular interactions, but results in a relatively mild disease phenotype. Renal failure in an L1649R male typically occurs in the 4th or 5th decade and precedes the onset of significant hearing loss by approximately 10 years.  相似文献   

5.
Summary A three generation family with Stickler syndrome is reported. Affected patients exhibited myopia with frequent retinal detachment or glaucoma. Most of them had characteristic facial dysmorphism, the Pierre-Robin sequence being observed in four individuals. Neonatal radiological signs of the Weissenbacher-Zweymüller syndrome were also noticed but early arthopathy was not reported in adults. Restriction fragment length polymorphism studies with the type II collagen gene (COL2A1) showed a recombination event between the disease locus and COL2A1, thus excluding collagen type II as the candidate gene. Although the calculation of the likelihood of genetic heterogeneity versus homogeneity based on 10 families was not statistically significant, we suggest that a second locus is probably involved in this highly variable syndrome.  相似文献   

6.
The locus for Friedreich ataxia (FRDA), a severe neurodegenerative disease, is tightly linked to markers D9S5 and D9S15, and analysis of rare recombination events has suggested the order cen–FRDA–D9S5–D9S15–qter. We report here the construction of a YAC contig extending 800 kb centromeric to D9S5 and the isolation of five new microsatellite markers from this region. In order to map these markers with respect to the FRDA locus, all within a 1-cM confidence interval, we sought to increase the genetic information of available FRDA families by considering homozygosity by descent and association with founder haplotypes in isolated populations. This approach allowed us to identify one phase-known recombination and one probable historic recombination on haplotypes from Réunion Island patients, both of which place three of the five markers proximal to FRDA. This represents the first identification of close FRDA flanking markers on the centromeric side. The two other markers allowed us to narrow the breakpoint of a previously identified distal recombination that is >180 kb from D9S5 (26P). Taken together, the results place the FRDA locus in a 450-kb interval, which is small enough for direct search of candidate genes. A detailed rare cutter restriction map and a cosmid contig covering this interval were constructed and should facilitate the search of genes in this region.  相似文献   

7.
Stickler syndrome is characterized by ophthalmic, articular, orofacial, and auditory manifestations. It has an autosomal dominant inheritance pattern and is caused by mutations in COL2A1, COL11A1, and COL11A2. We describe a family of Moroccan origin that consists of four children with Stickler syndrome, six unaffected children, and two unaffected parents who are distant relatives (fifth degree). All family members were clinically investigated for ear, nose, and throat; ophthalmologic; and radiological abnormalities. Four children showed symptoms characteristic of Stickler syndrome, including moderate-to-severe sensorineural hearing loss, moderate-to-high myopia with vitreoretinopathy, and epiphyseal dysplasia. We considered the COL9A1 gene, located on chromosome 6q13, to be a candidate gene on the basis of the structural association with collagen types II and XI and because of the high expression in the human inner ear indicated by cDNA microarray. Mutation analysis of the coding region of the COL9A1 gene showed a homozygous R295X mutation in the four affected children. The parents and four unaffected children were heterozygous carriers of the R295X mutation. Two unaffected children were homozygous for the wild-type allele. None of the family members except the homozygous R295X carriers had any signs of Stickler syndrome. Therefore, COL9A1 is the fourth identified gene that can cause Stickler syndrome. In contrast to the three previously reported Stickler syndrome-causing genes, this gene causes a form of Stickler syndrome with an autosomal recessive inheritance pattern. This finding will have a major impact on the genetic counseling of patients with Stickler syndrome and on the understanding of the pathophysiology of collagens. Mutation analysis of this gene is recommended in patients with Stickler syndrome with possible autosomal recessive inheritance.  相似文献   

8.
The urofacial (Ochoa) syndrome (UFS) is a rare autosomal recessive disease characterized by congenital obstructive uropathy and abnormal facial expression. The patients present with enuresis, urinary-tract infection, hydronephrosis, and voiding dysfunctions as a result of neurogenic bladders. To map the UFS gene, a genome screen using a combination of homozygosity-mapping and DNA-pooling strategies was performed in 20 selected patients, one patient pool, and three control pools (unaffected relatives). After analyses of 36 randomly chosen markers, D10S677 was identified as being linked to and associated with UFS, as suggested by a significant excess of homozygosity in patients compared with that in unaffected relatives (P < 10(-6)), as well as by the allelic-frequency differences between the patient pool and control pools. Ten additional markers flanking D10S677 and covering a 22-cM region then were analyzed to fine-map the UFS gene by use of haplotype (linkage disequilibrium) analysis. All 31 patients were found to be homozygous for two closely linked markers (D10S1726 and D10S198) located approximately 5 cM telomeric to D10S677, whereas only 12% of the unaffected relatives were homozygous for both markers (P < 10(-19)). Several patients are heterozygous at two markers immediately flanking D10S1726/D10S198, one on the centromeric side (D10S1433) and the other on the telomeric side (D10S603). These recombinational events place the UFS gene near D10S1726/D10S198 and within a 1-cM interval defined by D10S1433 and D10S603 on chromosome 10q23-q24.  相似文献   

9.
The gene for autosomal recessive juvenile Parkinsonism (AR-JP) recently has been mapped to chromosome 6q25.2-27 in Japanese families. We have tested one Algerian and 10 European multiplex families with early-onset Parkinson disease for linkage to this locus, with marker D6S305. Homogeneity analysis provided a conditional probability in favor of linkage of >.9 in eight families, which were analyzed further with eight microsatellite markers spanning the 17-cM AR-JP region. Haplotype reconstruction for eight families and determination of the smallest region of homozygosity in two consanguineous families reduced the candidate interval to 11.3 cM. If the deletion of two microsatellite markers (D6S411 and D6S1550) that colocalize on the genetic map and that segregate with the disease in the Algerian family is taken into account, the candidate region would be reduced to <1 cM. These findings should facilitate identification of the corresponding gene. We have confirmed linkage of AR-JP, in European families and in an Algerian family, to the PARK2 locus. PARK2 appears to be an important locus for AR-JP in European patients. The clinical spectrum of the disease in our families, with age at onset <=58 years and the presence of painful dystonia in some patients, is broader than that reported previously.  相似文献   

10.
Summary Ehlers-Danlos syndrome (EDS) type I is a generalized connective tissue disorder, the major manifestations of which are soft, velvety hyperextensible skin and moderately severe joint hypermobility. The gene defect or defects causing EDS type I have not yet been defined, but previous observations suggested that the syndrome may be caused by mutations in the genes for type-I collagen (COL1A1 and COL1A2) or type-III collagen (COL3A1). Here, we performed linkage studies for these three genes in large Azerbaijanian family with EDS type I. Three polymorphisms in the COL3A1 gene, two in the COL1A1 gene, and one in the COL1A2 gene were tested using the polymerase chain reaction. The data obtained excluded linkage of any of the three genes to EDS type I in the family.On leave of absence from Institute of Human Genetics, National Research Center of Medical Genetics, Moskvorechie St., 1. Moscow 115478, USSR  相似文献   

11.
Vascular Ehlers‐Danlos syndrome (vEDS) is a rare and severe hereditary connective tissue disease arising from a mutation in the type III collagen alpha I chain (COL3A1) gene, with a poor prognosis due to exceptional vascular ruptures and premature death. Herein, starting from a 36‐year‐old Chinese male patient with a complaint of upper abdominal pain, we collected clinical data of and performed a genetic analysis of a total of 20 family members. We identified two closely spaced COL3A1 missense variants in cis, p.Leu734Phe (c.2199_2200TC>AT) and p.Gly741Ser (c.2221G>A), as the cause of vEDS in this family. p.Gly741Ser, a glycine substitution mutation, has been previously reported, whereas p.Leu734Phe, a non‐glycine substitution mutation, is novel. We analysed their independent and combined effects on the COL3A1 level in transfected skin fibroblast cells by means of Western blotting. We found that both variants independently led to a reduced COL3A1 level and, when combined, led to an even more reduced COL3A1 level compared to the wild type. Thus, each missense variant can be independently classified as a pathogenic variant, albeit with a synergetic effect when occurring together. Moreover, our genetic findings provide an explanation for four previous sudden deaths and identified two high‐risk carriers in the family.  相似文献   

12.
13.
The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.  相似文献   

14.
Larsen syndrome (LS) is a skeletal dysplasia (osteochondrodysplasia) in which multiple dislocations of the large joints are the major feature. Nosology in this group of diseases, which constitutes 8% of Mendelian disorders in man, is primarily based on clinical and radiographic features. Hopes for more accurate classification grounds are currently being met by progress in elucidation of underlying genetic defects. We have performed linkage analysis in a large Swedish kindred with autosomal dominant LS and found the gene (LAR1) to be strongly linked to chromosome 3p markers (Zmax = 13.4 at (theta = .00). Recombination analysis indicates that the LAR1 locus is located in a region defined distally by D3S1581 and proximally by D3S1600, which cytogenetically maps to chromosome region 3p21.1-14.1. Linkage and recombination analysis of a COL7A1 PvuII intragenic polymorphism versus LS and chromosome 3 markers indicate that COL7A1 is located close to, but distinct from, the LAR1 locus.  相似文献   

15.
The 5q- syndrome is a myelodysplastic syndrome with the 5q deletion as the sole karyotypic abnormality. The human ATX1 homologue (HAH1), encodes a copper-binding protein with a role in antioxidant defence. We have mapped this gene to the 3 Mb critical region of gene loss of the 5q- syndrome within 5q32, flanked by the genes for ADRB2 and IL12B, using gene dosage analysis. Fine physical mapping of the HAH1 gene within this genomic interval was then performed by screening YAC and BAC contigs spanning the critical region of the 5q- syndrome using PCR amplification. The HAH1 gene maps immediately adjacent to the SPARC gene at 5q32, and is flanked by the genetic markers D5S1838 and D5S1419. The HAH1 gene is expressed in haematological tissues and plays a role in antioxidant defence. Antioxidant levels are low in most cancers and the importance of antioxidant enzymes in cancer genesis is well recognised. Genomic localisation, function and expression would suggest that the HAH1 gene represents a candidate gene for the 5q-syndrome.  相似文献   

16.
We report that the Bjornstad syndrome gene maps to chromosome 2q34-36. The clinical association of sensorineural hearing loss with pili torti (broken, twisted hairs) was described >30 years ago by Bjornstad; subsequently, several small families have been studied. We evaluated a large kindred with Bjornstad syndrome in which eight members inherited pili torti and prelingual sensorineural hearing loss as autosomal recessive traits. A genomewide search using polymorphic loci demonstrated linkage between the disease gene segregating in this kindred and D2S434 (maximum two-point LOD score = 4.98 at theta = 0). Haplotype analysis of recombination events located the disease gene in a 3-cM region between loci D2S1371 and D2S163. We speculate that intermediate filament and intermediate filament-associated proteins are good candidate genes for causing Bjornstad syndrome.  相似文献   

17.
We have performed linkage analysis in eight families with rod monochromacy, an autosomal recessively inherited condition with complete color blindness. Significant linkage was found with markers located at the pericentromeric region of chromosome 2. A maximum lod score of 5.36 was obtained for marker D2S2333 at θ = 0.00. Mapping of meiotic breakpoints localized the disease gene between markers D2S2187 and D2S2229. Homozygosity for a number of subsequent markers indicating identity by descent was found in two families and provides evidence for a further refinement of the locus proximal to D2S373. This defines an interval of ≈3 cM covering theACHM2locus for rod monochromacy. Radiation hybrid mapping of theCNGA3gene encoding the α-subunit of the cGMP gated cation channel in human cone photoreceptors resulted in a maximum lod score of 16.1 with marker D2S2311 combined with a calculated physical distance of 6.19cR10,000. Screening of the CEPH YAC library and subsequent STS mapping indicated the physical order cen–D2S2222–D2S2175–(D2S2187/D2S2311)–qtel ofmarkers on 2q11 and showed that theCNGA3gene maps most closely to D2S2187 and D2S2311. These data indicate that theCNGA3gene maps within the critical interval of theACHM2locus for rod monochromacy and thus is a candidate gene for this disease.  相似文献   

18.
The COL4A5 gene encodes the alpha5 (type IV) collagen chain and is defective in X-linked Alport syndrome (AS). Here, we report the first systematic analysis of all 51 exons of COL4A5 gene in a series of 201 Italian AS patients. We have previously reported nine major rearrangements, as well as 18 small mutations identified in the same patient series by SSCP analysis of several exons. After systematic analysis of all 51 exons of COL4A5, we have now identified 30 different mutations: 10 glycine substitutions in the triple helical domain of the protein, 9 frameshift mutations, 4 in-frame deletions, 1 start codon, 1 nonsense, and 5 splice-site mutations. These mutations were either unique or found in two unrelated families, thus excluding the presence of a common mutation in the coding part of the gene. Overall, mutations were detected in only 45% of individuals with a certain or likely diagnosis of X-linked AS. This finding suggests that mutations in noncoding segments of COL4A5 account for a high number of X-linked AS cases. An alternative hypothesis is the presence of locus heterogeneity, even within the X-linked form of the disease. A genotype/phenotype comparison enabled us to better substantiate a significant correlation between the degree of predicted disruption of the alpha5 chain and the severity of phenotype in affected male individuals. Our study has significant implications in the diagnosis and follow-up of AS patients.  相似文献   

19.
Generalised atrophic benign epidermolysis bullosa (GABEB) is a form of junctional epidermolysis bullosa with a recessive mode of inheritance. The gene considered likely to be involved in this disease is COL17A1, since in the majority of GABEB patients the product of that gene, the 180-kD bullous pemphigoid antigen (BP180), is undetectable in skin. We have identified an intragenic COL17A1 microsatellite marker for which 83% of randomly selected control individuals are heterozygous. We observed homozygosity for different alleles of this marker in five out of six collagen type XVII-negative GABEB patients of different European descent. Five of the six COL17A1 alleles of three patients originating from the eastern part of The Netherlands were identical, as were the haplotypes including flanking markers. The 2342delG mutation was identified in all these five alleles. This confirms the expectation that due to genetic drift and hidden inbreeding for an autosomal recessive disorder with low gene frequency, such as collagen type XVII-negative GABEB, most disease alleles from a restricted geographical area will be “identical by descent”. Our results demonstrate that involvement of a candidate gene can be confirmed by looking for identity by descent of highly informative intragenic markers. Received: 25 October 1996 / Accepted: 6 March 1997  相似文献   

20.
John P  Ali G  Chishti MS  Naqvi SM  Leal SM  Ahmad W 《Human genetics》2006,118(5):665-667
Alopecia with mental retardation syndrome is a rare autosomal recessive disorder characterized clinically by total or partial alopecia and mental retardation. In an effort to understand the molecular bases of this form of alopecia syndrome, large Pakistani consanguineous kindred with multiple affected individuals has been ascertained from a remote region in Pakistan. Genome wide scan mapped the disease locus on chromosome 3q26.33–q27.3. A maximum two-point LOD score of 3.05 (θ=0.0) was obtained at marker D3S3583. Maximum multipoint LOD score exceeding 5.0, obtained with several markers, supported the linkage. Recombination events observed in affected individuals localized the disease locus between markers D3S1232 and D3S2436, spanning 11.49-cM region on chromosome 3q26.33–q27.3. Sequence analysis of a candidate gene ETS variant gene 5 from DNA samples of two affected individuals of the family revealed no mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号