首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase was studied in a system containing isolated rabbit heart mitochondria, hexokinase and adenylate kinase at low concentrations of adenine nucleotides. Oxygen consumption by mitochondria and glucose-6-phosphate synthesis by hexokinase were recorded. It was found that with adenylate kinase being active both in mitochondria and in the washing solution, the rate and efficiency of glucose-6-phosphate synthesis considerably increases. The effects of adenylate kinase activity are fully abolished by diadenosine pentaphosphate, an inhibitor of adenylate kinase. The experimental results based on the use of adenylate kinase demonstrate the possibility of increasing the rate and efficiency of energy transfer between two spatially uncoupled biochemical processes in vitro with the aid of an enzymatic system.  相似文献   

2.
The organ specificity of creatine kinase, esterase, isocitrate dehydrogenase lactate dehydrogenase, nucleoside phosphorylase, adenylate kinase, hexokinase, malate dehydrogenase, malic enzyme, glucose-6-phosphate dehydrogenase of black-white cattle has been studied. Esterases, creatine kinase, adenylate kinase, hexokinase and glucose-6-phosphate dehydrogenase have a very wide spectrum of the organ variabilities. Liver and heart have the largest specificity of enzymes activity. Some peculiarities of isozyme spectrum are found in ovaries and spleen.  相似文献   

3.
The influence of adenylate kinase on the rates of glucose-6-phosphate synthesis and ferricyanide reduction in a system containing chloroplasts, hexokinase, and ADP at low concentration during photophos-phorylation has been studied. It has been found that the addition of adenylate kinase into the reaction medium under phosphorylation results in a simultaneous increase in the rate of ferricyanide reduction and glucose-6-phosphate synthesis. In this case, the ratio of glucose-6-phosphate formed to the quantity of ferricyanide reduced was close to unity as the concentration of adenylate kinase in the medium increased. The concentrations of glucose-6-phosphate and ferricyanide reduced in the system sharply increased with time; at the same time, no significant decrease in ADP concentration and AMP accumulation by the methods available was found. Hence, the limiting factors in these reactions are not the concentrations but the rates of diffusion of the substrates. Presumably, diffusion limitations in the system are eliminated owing to the participation of adenylate kinase. The results obtained are discussed in terms of the model according to which the regulation of the diffusion of adenine nucleotides and the control of regeneration of ATP according to its requirements in correlation with other regulation mechanisms can occur in chloroplasts upon adenylate kinase functioning by direct and reverse connection of the shuttle type.  相似文献   

4.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

5.
The problems encountered with a coupled enzyme assay for ATP using glucose, hexokinase and glucose-6-phosphate dehydrogenase are discussed and a modification where fructose and glucosephosphate isomerase were substituted for glucose is described. This modified assay was used successfully to measure the ATP synthesized by reversal of the sarcoplasmic reticulum ATPase. ATP synthesized by adenylate kinase contaminating the sarcoplasmic reticulum was easily corrected for by a subtraction procedure.  相似文献   

6.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

7.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

8.
Abstract: Subcellular localization of hexokinase in the honeybee drone retina was examined following fractionation of cell homogenate using differential centrifugation. Nearly all hexokinase activity was found in the cytosolic fraction, following a similar distribution as the cytosolic enzymatic marker, phosphoglycerate kinase. The distribution of enzymatic markers of mitochondria (succinate dehydrogenase, rotenone-insensitive cytochrome c reductase, and adenylate kinase) indicated that the outer mitochondrial membrane was partly damaged, but their distributions were different from that of hexokinase. The activity of hexokinase in purified suspensions of cells was fivefold higher in glial cells than in photoreceptors. This result is consistent with the hypothesis based on quantitative 2-deoxy[3H]glucose autoradiography that only glial cells phosphorylate significant amounts of glucose to glucose-6-phosphate. The activities of alanine aminotransferase and to a lesser extent of glutamate dehydrogenase were higher in the cytosolic than in the mitochondrial fraction. This important cytosolic activity of glutamate dehydrogenase was consistent with the higher activity found in mitochondria-poor glial cells. In conclusion, this distribution of enzymes is consistent with the model of metabolic interactions between glial and photoreceptor cells in the intact bee retina.  相似文献   

9.
1. In rat submandibular gland, hexokinase was distributed not only in cytosol fraction but also in mitochondrial fraction. 2. Glucose-6-phosphate and ATP were most effective substances on releasing hexokinase from mitochondria. However, all the hexokinase in mitochondria could not be extracted with these substances. 3. Concentrations of glucose-6-phosphate and ATP were decreased with the administration of epinephrine in vivo. 4. Increase of the amount of mitochondria-bound hexokinase was observed for 5 min with epinephrine administration, and it returned to the control level after 10 min. 5. In rat submandibular gland, mitochondrial hexokinase may reversibly bind to and release from mitochondria as observed in brain.  相似文献   

10.
Repeated washing of a brain mitochondrial fraction results in a progressive decrease in the proportion of mitochondrially bound hexokinase that can be solubilized during a subsequent incubation with glucose-6-phosphate (glucose-6-P). Phospholipids removed during the washing procedure can be added back to washed mitochondria, resulting in enhancement of the solubilization by glucose-6-P. Column and thin-layer chromatographic methods have been used to isolate and identify active phospholipids. Additional studies were performed with purified lipids obtained commercially. Both lysophospholipids and acidic phospholipids were active in enhancing solubilization of hexokinase by glucose-6-P. Phospho-inositides, particularly diphosphoinositide, were quite effective, raising the possibility that the actively metabolized phosphoinositides may be involved in regulation of hexokinase binding in vivo.  相似文献   

11.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

12.
In leukocytes of exudate from diabetic rabbits, the activities of hexokinase, phosphoglucomutase and glucose-6-phosphate dehydrogenase are increased, and a tendency of adenylate kinase activity to decline is observable. The activities of UDP-pyrophosphatase, UDP-glycogentransferase, 6-phosphogluconate dehydrogenase and glutahione reductase in the exudate erythrocytes in diabetes are not essentially altered. The decrease of the key enzymes of glycolysis and pentose phosphate cycle, providing the leukocytes with energy and metabolites, reduces the functional activity of leukocytes from exudate in diabetes.  相似文献   

13.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

14.
Despite a detailed understanding of their metabolism, mitochondria often behave anomalously. In particular, global suppression of mitochondrial metabolism and metabolite exchange occurs in apoptosis, ischemia and anoxia, cytopathic hypoxia of sepsis and multiple organ failure, alcoholic liver disease, aerobic glycolysis in cancer cells (Warburg effect) and unstimulated pancreatic beta cells. Here, we propose that closure of voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane accounts for global mitochondrial suppression. In anoxia, cytopathic hypoxia and ethanol treatment, reactive oxygen and nitrogen species, cytokines, kinase cascades and increased NADH act to inhibit VDAC conductance and promote selective oxidation of membrane-permeable respiratory substrates like short chain fatty acids and acetaldehyde. In cancer cells, highly expressed hexokinase binds to and inhibits VDAC to suppress mitochondrial function while stimulating glycolysis, but an escape mechanism intervenes when glucose-6-phosphate accumulates and dissociates hexokinase from VDAC. Similarly, glucokinase binds mitochondria of insulin-secreting beta cells, possibly blocking VDAC and suppressing mitochondrial function. We propose that glucose metabolism leads to glucose-6-phosphate-dependent unbinding of glucokinase, relief of VDAC inhibition, release of ATP from mitochondria and ATP-dependent insulin release. In support of the overall proposal, ethanol treatment of isolated rat hepatocytes inhibited mitochondrial respiration and accessibility to adenylate kinase in the intermembrane space, effects that were overcome by digitonin permeabilization of the outer membrane. Overall, these considerations suggest that VDAC is a dynamic regulator, or governator, of global mitochondrial function both in health and disease.  相似文献   

15.
Despite a detailed understanding of their metabolism, mitochondria often behave anomalously. In particular, global suppression of mitochondrial metabolism and metabolite exchange occurs in apoptosis, ischemia and anoxia, cytopathic hypoxia of sepsis and multiple organ failure, alcoholic liver disease, aerobic glycolysis in cancer cells (Warburg effect) and unstimulated pancreatic beta cells. Here, we propose that closure of voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane accounts for global mitochondrial suppression. In anoxia, cytopathic hypoxia and ethanol treatment, reactive oxygen and nitrogen species, cytokines, kinase cascades and increased NADH act to inhibit VDAC conductance and promote selective oxidation of membrane-permeable respiratory substrates like short chain fatty acids and acetaldehyde. In cancer cells, highly expressed hexokinase binds to and inhibits VDAC to suppress mitochondrial function while stimulating glycolysis, but an escape mechanism intervenes when glucose-6-phosphate accumulates and dissociates hexokinase from VDAC. Similarly, glucokinase binds mitochondria of insulin-secreting beta cells, possibly blocking VDAC and suppressing mitochondrial function. We propose that glucose metabolism leads to glucose-6-phosphate-dependent unbinding of glucokinase, relief of VDAC inhibition, release of ATP from mitochondria and ATP-dependent insulin release. In support of the overall proposal, ethanol treatment of isolated rat hepatocytes inhibited mitochondrial respiration and accessibility to adenylate kinase in the intermembrane space, effects that were overcome by digitonin permeabilization of the outer membrane. Overall, these considerations suggest that VDAC is a dynamic regulator, or governator, of global mitochondrial function both in health and disease.  相似文献   

16.
Mitochondria from rabbit reticulocytes contain about 50% of the total reticulocyte hexokinases. The proportion of mitochondrial hexokinases may be changed under different metabolic conditions. Mitochondrial bound and soluble hexokinases exhibit different kinetic properties (KMATP and glucose-6-phosphate inhibition). The respiratory rate of isolated reticulocyte mitochondria in the presence of glucose depends on the glucose-6-phosphate concentration, as the ADP generation by the endogenous hexokinases is strongly inhibited by glucose-6-phosphate. In the experimental system all intermediary states of mitochondrial respiration can be adjusted between the state of maximal activity (state 3 or active state) and the controlled or resting state (state 4) by different glucose-6-phosphate levels. The stationary levels of the extramitochondrial adenine nucleotides in this experimental system have been measured. The rate of mitochondrial respiration and ATP formation depends on the extramitochondrial ATP/ADP ratio. At ratios of about 10 and lower the mitochondria are in their maximum phosphorylation state, at higher ratios the mitochondrial ATP formation is controlled by the extramitochondrial ATP/ADP ratio. It is postulated that the close intercounnection between the mitochondrial hexokinase and the mitochondrial ATP forming system in reticulocytes is of funcitonal significance for mitochondrial-cytosolic interactions in rabbit reticulocytes and probably in other types of cells with mitochondrial hexokinases, too.  相似文献   

17.
Interactions between intramitochondrial ATP-generating, ADP-requiring processes and ATP-requiring, ADP-generating phosphorylation of glucose by mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been investigated using well-coupled mitochondria isolated from rat brain. ADP generated by mitochondrially bound hexokinase was more effective at stimulating respiration than was ADP generated by hexokinase dissociated from the mitochondria, and pyruvate kinase was less effective as a scavenger of ADP generated by the mitochondrially bound hexokinase than was the case with ADP generated by the dissociated enzyme. These results indicate that ADP generated by the mitochondrially bound enzyme is at least partially sequestered and directed toward the mitochondrial oxidative phosphorylation apparatus. Under the conditions of these experiments, the maximum rate of ATP production by oxidative phosphorylation was approximately 10-fold greater than the maximum rate of ATP generation by the adenylate kinase reaction. Moreover, during periods of active oxidative phosphorylation, adenylate kinase made no detectable contribution to ATP production. Thus, adenylate kinase does not represent a major source of ATP for hexokinase bound to actively phosphorylating brain mitochondria. With adenylate kinase as the sole source of ATP, a steady state was attained in which ATP formation was balanced by utilization in the hexokinase reaction. In contrast, when oxidative phosphorylation was the source of ATP, a steady state rate of Glc phosphorylation was attained, but it was equivalent to only about 40-50% of the rate of ATP production and thus there was a continued net increase in ATP concentration in the system. Rates of Glc phosphorylation with ATP generated by oxidative phosphorylation exceeded those seen with equivalent levels of exogenously added ATP. Moreover, at total ATP concentrations greater than approximately 0.2 mM, hexokinase bound to actively phosphorylating mitochondria was unresponsive to continued slow increases in ATP levels; acute increase in ATP (by addition of exogenous nucleotide) did, however, result in increased hexokinase activity. The relative insensitivity of mitochondrially bound hexokinase to extramitochondrial ATP suggested dependence on an intramitochondrial pool (or pools) of ATP during active oxidative phosphorylation. Two intramitochondrial compartments of ATP were identified based on their selective release by inhibitors of electron transport or oxidative phosphorylation. These compartments were distinguished by their sensitivity to inhibitors and the kinetics with which they were filled with ATP generated by oxidative phosphorylation. Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Under effects of myocardial ischemia (30 min), the activities of the intermembrane enzymes of rabbit heart mitochondria, i.e., adenylate kinase and creatine kinase, are inhibited by 20% and 23%, respectively. Consequently, the creatine- and AMP-activated respiration of mitochondria diminishes by 52% and 39%, respectively. An inhibitory analysis of ADP-, AMP- and creatine-activated mitochondrial respiration performed in the presence of atractyloside has demonstrated that ischemia (30 min), adriblastin (0.688 mM) and succinate (10 mM) cause alterations in the functional coupling of adenylate kinase and creatine kinase with the adenine nucleotide translocator. These alterations lead to the diminution of the rate and efficiency of energy transfer from mitochondria to hexokinase, as an arbitrary site of energy consumption. An addition of cytochrome c to ischemic heart mitochondria results in an increase in the rate of ATP synthesis; however, the efficiency of this process is lowered. The toxic effect of the anticancer drug--adriblastin on heart mitochondria respiration is enhanced in the presence of creatine in the bathing solution.  相似文献   

19.
The relative rates of catabolism of glucose and glucose-6-phosphate by intact-cell suspensions of the meningopneumonitis agent, a member of the psittacosis group (Chlamydia), and the properties of the hexokinase and glucose-6-phosphate dehydrogenase of these suspensions were investigated. It is proposed that the hexokinase is a host enzyme bound to the surface of the meningopneumonitis cell and that glucose-6-phosphate is the first substrate in the conversion of hexose to pentose to be attacked by enzymes synthesized by the meningopneumonitis agent.  相似文献   

20.
Enzymes and Nucleotides in Virions of Rous Sarcoma Virus   总被引:13,自引:10,他引:3       下载免费PDF全文
In addition to the previously described deoxyribonucleic acid (DNA) polymerase, DNA ligase, DNA exonuclease, and DNA endonuclease activities, purified virions of Schmidt-Ruppin strain of Rous sarcoma virus (SRV) have nucleotides and nucleotide kinase, phosphatase, hexokinase, and lactate dehydrogenase activities. The SRV virions have no glucose-6-phosphate dehydrogenase activity. All enzyme activities, but glucose-6-phosphate dehydrogenase and adenosine triphosphatase, were increased by disruption of the virions. The DNA polymerase, DNA ligase, and hexokinase activities had a higher specific activity in purified virion cores. It is suggested that during assembly virions of SRV may pick up cytoplasmic components which bind to virion proteins. The role of these components in viral replication is not known at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号