首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
The quenching of the fluorescence of liver alcohol dehydrogenase (LADH) by molecular oxygen has been studied by both fluorescence lifetime and intensity measurements. This was done in the presence of 1 M acrylamide which selectively quenches the fluorescence of the surface tryptophan residue, Trp-15, thus allowing us to focus on the quenching of the deeply buried tryptophan, Trp-314, by molecular oxygen. Such studies yielded a Stern-Volmer plot of F0/F with a greater slope than the corresponding tau o/tau plot. This indicates that both dynamic and static quenching of Trp-314 occurs. The temperature dependence of the dynamic quenching of LADH by oxygen was also studied at three temperatures, from which we determined the activation enthalpy for the quenching of Trp-314 to be about 10 kcal/mol. The oxygen quenching of a ternary complex of LADH, NAD+ and trifluoroethanol was also studied. The rate constant for dynamic quenching of Trp-314 by oxygen was found to be approximately the same in the ternary complex as that in the unliganded enzyme.  相似文献   

2.
2-Mercaptoethanol is a strong inhibitor of LADH. The inhibitory effect is likely due to the binding of the SH group to the enzymatic zinc ion. Various thiol compounds do not inhibit YADH and it is suggested that the zinc atoms involved in the catalytic mechanism of LADH and YADH may have different structural arrangements and that these zinc atoms in YADH may not be blocked by thiol compounds. Thiol compounds also quench the enhanced fluorescence of LADH-NADH in a pH-dependent manner. At pH 9.2, the binding of coenzyme to LADH is replaced by 2-mercaptoethanol, whilst at pH 7.3, it further quenches the fluorescence of NADH-LADH. This quenching of fluorescence is likely attributed to a conformational change and energy transfer upon binding of 2-mercaptoethanol to the LADH-NADH complex. Complete reversal of the inhibitory effect of thiol compounds on LADH can be obtained by dialysis.  相似文献   

3.
Protein heterogeneous fluorescence results from the different microenvironment of each emitting chromophore. The structural and dynamic information contained in this emission can be extracted to some extent by selective quenching experiments. In this work, graphical and numerical methods are described for the analysis of protein emission in terms of three separated contributions: a fluorescence fraction which is not accessible to the quencher and two additional fractions with different solvent exposure. ‘Static quenching’ deviations from Stern-Volmer behaviour are also discussed. The application of these methods is exemplified on simulated quenching experiments and real data on acrylamide quenching of lysozyme fluorescence.  相似文献   

4.
The interactions between loratadine and bovine serum albumin (BSA) and human serum albumin (HSA) were studied using tryptophan fluorescence quenching method. The fluorescence intensity of the two serum albumins could be quenched 70% at the molar ratio [loratadine]:[BSA (or HSA)]=10:1. In the linear range (0-50 micromol L(-1)) quenching constants were calculated using Stern-Volmer equation. Temperature in the range 298 K-310 K had a significant effect (p<0.05) on the two serum albumins through ANOVA analysis and t-test. Furthermore the conformation changes in the interactions were studied using FTIR spectroscopy.  相似文献   

5.
Cod parvalbumin (isotype III) is a single tryptophan-containing protein. The fluorescence characteristics of this tryptophan residue (lambda em approximately 315 nm) suggest that it is buried from solvent and that it is located in an apolar core of the protein. Solute quenching studies of the tryptophan fluorescence of parvalbumin reveal dynamic quenching rate constants, kq, of 1.1 X 10(8) and 2.3 X 10(9) M-1 s-1 (at 25 degrees C) with acrylamide and oxygen, respectively, as quenchers. From temperature dependence studies, activation energies of 6.5 +/- 1.5 and 6.0 +/- 0.5 kcal/mol are found for acrylamide and oxygen quenching. The kq for acrylamide quenching is found to be relatively unchanged (+/- 10%) by an 8-fold increase in the bulk viscosity (glycerol/water mixture). These temperature and viscosity studies argue that the acrylamide quenching process involves a dynamic penetration of the quencher, facilitated by fluctuations in the protein's structure.  相似文献   

6.
    
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M−1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25–37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   

7.
In this article, we report tuning of the sensory capability of an amino acid (tryptophan) in a biomimicking anionic micellar nano cage. It has been shown that anionic surfactant concentration dictates the sensing behavior of tryptophan toward body malodor component (butyric acid) generated by bacterial degradation of tributyrin. We have proposed a fluorescence quenching mechanism that is based on short-chain fatty acid (SCFA) proximity with tryptophan present at the micelle-water interface. Anionic surfactant-induced fluorescent sensor activity of tryptophan exhibits high sensitivity (detection limit up to 10 μM) and specific selectivity (toward SCFA, < C12) in aqueous solution. We also determined antibacterial efficacy of various zinc salts based on the sensory activity of tryptophan, which has been correlated with the established resazurin assay.  相似文献   

8.
Hemocyanins are oxygen carriers of arthropods and molluscs. The oxygen is bound between two copper ions, forming a Cu(II)-O2 2–-Cu(II) complex. The oxygenated active sites create two spectroscopic signals indicating the oxygen load of the hemocyanins: first, an absorption band at 340 nm which is due to a ligand-to-metal charge transfer complex, and second, a strong quenching of the intrinsic tryptophan fluorescence, the cause of which has not been definitively identified. We showed for the 4×6-mer hemocyanin of the tarantula Eurypelma californicum that the fluorescence quenching of oxygenated hemocyanin is caused exclusively by fluorescence resonance energy transfer (FRET). The tarantula hemocyanin consists of 24 subunits containing 148 tryptophans acting as donors and 24 active sites as acceptors. The donor–acceptor distances are determined on the basis of a closely related crystal structure of the horseshoe crab Limulus polyphemus hemocyanin subunit II (68–79% homology). Calculation of the expected fluorescence quenching and the measured transfer efficiency coincided extraordinary well, so that the fluorescence quenching of oxygenated tarantula hemocyanin can be completely explained by Förster transfer. This results explain for the first time, on a molecular basis, why fluorescence quantum yield can be used as an intrinsic signal for oxygen load of at least one arthropod hemocyanin, in particular that from the tarantula.  相似文献   

9.
Trifluoroacetamide was found to be a good quencher of tryptophan fluorescence, and the quenching was shown to proceed via both a dynamic and a static process. The respective quenching constants were determined by the measurement of the decrease of the fluorescence lifetime in the presence of the quencher. The static and the bimolecular rate quenching constants of N-acetyltryptophanamide are equal to 0.34 1·mol?1 and 1.9·109 1·mol?1·s?1, respectively. These values indicate that trifluoroacetamide is an efficient quencher of tryptophan fluorescence. This conclusion is also supported by a complete quenching of bovine serum albumin and wheat germ agglutinin fluorescence. In the case of lysozyme, trifluoroacetamide quenches the fluorescence of tryptophan residues which fluoresce with a maximum at 348 nm but not the buried tryptophan residues which fluoresce with a maximum at 333 nm. Trifluoroacetamide quenching of wheat germ agglutinin emission confirms the homogeneity and the high accessibility of emitting tryptophan residues, in agreement with a previous report (Privat, J.P. and Monsigny, M. (1975) Eur. J. Biochem. 60, 555–567). The tryptophan fluorescence decay of wheat germ agglutinin is biexponential even in the presence of the quencher; the static and bimolecular rate quenching constants are equal to 0.22 1·mol?1 and 092·109 1·mol?1·?1, respectively. In the presence of a specific lectin ligand, the methyldi-N,N′-trifluoroacetyl-β- chitobioside, the quenching of wheat germ agglutinin fluorescence involves a direct contact between tryptophan residues and trifluoroacetamido groups of the ligand and in contrast with the quenching induced by free trifluoroacetamide shows that the tryptophan fluorescence is not fully quenched.  相似文献   

10.
Shi Q  Wang X  Ren J 《Biophysical chemistry》2008,138(3):138-143
p21 is a protein with important roles in cell proliferation, cell cycle regulation and apoptosis. Several studies have demonstrated that its intracellular localization plays an important role in the functional regulation and binding of calmodulin favors its nuclear translocation. However, the detail mechanism of the interaction with p21 and calmodulin is not well understood. In this report, peptides derived from the C-terminal of p21 that cover the binding domain of calmodulin were used to investigate the association of p21 with calmodulin. We found p21(141-164) interaction with Ca(2+)-saturated dansyl-labelled calmodulin caused a significant increase in dansyl fluorescence intensity and a blue shift of the maximum emission from 510 to 475 nm. The Trp fluorescence intensities of mutated p21(141-164) peptides (F150W, Y151W and F159W) increased upon binding to Ca(2+)-saturated calmodulin and fluorescence maxima were blue shifted from 350 nm to 330 nm. The results suggested p21(141-164) is most likely buried in the hydrophobic binding tunnel of calmodulin. Both dansyl and Trp fluorescence titrations generated dissociation constants around 0.1 muM and a stoichiometry of 1:1, which was further confirmed by nondenaturing gel band shift electrophoresis. Fluorescence titrations and Trp fluorescence quenching results indicated electrostatic interaction is involved in this association. Upon binding to calmodulin, p21(141-164) remained largely unstructured and showed only about 15% alpha-helix. In contrast to other calmodulin binding peptide, the dominant force in the association of p21(141-164) with calmodulin may be electrostatic interaction. Our results would be helpful for understanding the molecular details of p21 and calmodulin interaction.  相似文献   

11.
江浙蝮蛇毒中性磷脂酶A_2的荧光光谱学研究   总被引:1,自引:0,他引:1  
用荧光光谱方法研究了江浙蝮蛇毒中性磷脂酶A_2(NPLA_2).研究结果表明NPLA_2分子中确实含有一个色氨酸残基.且位于NPLA_2分子表面;我们还发现荧光探针bis-ANS在NPLA_2分子上有一结合区,其解离平衡常数为11.6μmol/L ;利用结合了的bis-ANS与NPLA_2分子中色氨酸残基之间的能量传递计算出两者之间的距离为17.7(?).  相似文献   

12.
江浙蝮蛇毒中性磷脂酶A_2的荧光光谱学研究   总被引:3,自引:1,他引:3  
用荧光光谱方法研究了江浙蝮蛇毒中性磷脂酶A_2(NPLA_2).研究结果表明NPLA_2分子中确实含有一个色氨酸残基.且位于NPLA_2分子表面;我们还发现荧光探针bis-ANS在NPLA_2分子上有一结合区,其解离平衡常数为11.6μmol/L ;利用结合了的bis-ANS与NPLA_2分子中色氨酸残基之间的能量传递计算出两者之间的距离为17.7(?).  相似文献   

13.
A new fluorescent labeling procedure specific for the strut sequence of myosin subfragment-1's 50kDa cleft was developed using CY3 N-hydroxy succinimidyl ester as a hydrophobic tag and hydrophobic interaction chromatography to purify the major labeled species which retained actin-activated ATPase activity. Stern-Volmer analysis suggests that the CY3 is in close proximity to basic residues, consistent with inspection of the mapped labeling site in the atomic model. Fluorescence polarization indicates that the CY3 becomes more mobile upon actin binding, supporting a location near the actomyosin interface. In contrast, nucleotide binding to myosin had little impact on the CY3. Molecular mechanics and stochastic dynamics simulations suggest that this labeling site is sensitive to forced cleft opening and closure, but the upper 50kDa cleft does not move easily. In addition, there appear to be some long-range effects of forced cleft opening and closing that could impact the lever arm position.  相似文献   

14.
Abstract The methylotrophic yeasts, Hansenula polymorpha and Candida boidinii , and the methylotrophic Gram-negative bacteria, Paracoccus denitrificans and Thiobacillus versutus (but not Methylophaga marina ), contain NAD/GSH-dependent formaldehyde dehydrogenase when grown on C1-compounds. The enzymes appeared to be similar to each other and to the mammalian counterparts with respect to substrate specificity, including the ability to act as an alcohol dehydrogenase class III. The Gram-positive bacteria, Amycolatopsis methanolica and Rhodococcus erythropolis , possess NAD/Factor-dependent formaldehyde dehydrogenase when grown on C1-compounds or on C1-unit-containing substrates, respectively. These enzymes also exhibit alcohol dehydrogenase class III activity. Thus, like the mammalian ones, methylotrophic formaldehyde dehydrogenases show dual substrate specificity, suggesting that this is an inherent property of the enzyme.  相似文献   

15.
M. Jouy  C. Sironval 《Planta》1979,147(2):127-133
Chlorophyll(ide) fluorescence emission decreases at room temperature during completion of protochlorophyll(ide) reduction. The process responsible for this quenching is parallel to the P688-676 P695-682 transition. It proceeds equally well in darkness and in the light. It consists in a decrease of the fluorescence yield of chlorophyll(ide) in P695-682. Apparently, room temperature P695-682 fluorescence is regulated by a conjunction of factors such as energy transfers and photobiochemical activities.Abbreviations NADP nicotinamide-adenine dinucleotide phosphate - CPI chlorophyll-protein-complex I - CPII chlorophyll-protein-complex II Aspirant du Fond National de la Recherche Scientifique, Belgium  相似文献   

16.
70年代就有报道从蛇毒中提纯NAD糖苷水解酶(NADase,E.C.3.2.2.5)和一些生物性质方面的研究.Huang等[1]从皖南尖吻蝮蛇毒中分离得到的NADase是由两个相同亚基组成,含糖33%,等电点为7.6.刘清亮等[2]研究了NADase的ESR谱,推知Cu2+离子至少与三个氮原子配位.本文主要研究多种?..  相似文献   

17.
The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been identified: the dominant mechanism in many strains of cyanobacteria depends on the orange carotenoid protein (OCP), while the second mechanism is intrinsically available to a phycobilisome and is possibly activated faster than the former. Recent single molecule spectroscopy studies have shown that far-red (FR) emission states are related to the OCP-dependent mechanism and it was proposed that the second mechanism may involve similar states. In this study, we examined the dynamics of simultaneously measured emission spectra and intensities from a large set of individual phycobilisome complexes from Synechocystis PCC 6803. Our results suggest a direct relationship between FR spectral states and thermal energy dissipating states and can be explained by a single phycobilin pigment in the phycobilisome core acting as the site of both quenching and FR emission likely due to the presence of a charge-transfer state. Our experimental method provides a means to accurately resolve the fluorescence lifetimes and spectra of the FR states, which enabled us to quantify a kinetic model that reproduces most of the experimentally determined properties of the FR states.  相似文献   

18.
Theory is developed for the characterization of protein interactions by spectral techniques, where the constraints of constant temperature and pressure demand that thermodynamic activity be defined on the molal concentration scale. The customary practice of defining the equilibrium constant (K) on a molar basis is accommodated by developing expressions to convert those experimental values (Kmolar) to their thermodynamically more rigorous counterparts (Kmolal). Such procedures are illustrated by reanalysis of published results for the effects of molecular crowding agents on the isomerisation of α-chymotrypsin and reversible complex formation between catalase and superoxide dismutase. Although those reanalyses have led to only minor refinements of the quantitative interpretation, it is clearly preferable to adopt thermodynamic rigor throughout future spectral studies by employing the molal concentration scale from the outset.  相似文献   

19.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

20.
In Candida albicans, alcohol metabolism is implicated in biofilm formation. The alcohol dehydrogenase gene (ADH1) is involved in the conversion of acetaldehyde to ethanol and reported to be downregulated during biofilm formation. C. albicans produces acetaldehyde under both in vivo and in vitro conditions. Mutations in ADH genes result in increased acetaldehyde production in vitro, but studies are lacking on the morphogenetic role(s) of acetaldehyde in C. albicans. We report here that acetaldehyde at a concentration of 7 mM was able to inhibit the conversion from yeast to hyphal forms induced by four standard inducers at 37°C. The hyphal inhibitory concentrations did not adversely affect the growth and viability of C. albicans cells. The same concentration of acetaldehyde also significantly inhibited biofilm development, and only adhered yeast cells were found. We hypothesize that acetaldehyde produced by C. albicans may exert a morphogenetic regulatory role influencing yeast-to-hypha conversion, biofilm formation, dissemination and establishment of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号