首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   

2.
A trimodal change in the cellular levels of three major polyamines: spermidine, N,N′-bis(3-aminopropyl)-1, 3-propanediamine (BAP) and 3,3′-diaminodipropylamine (DAD) was observed during two successive cell cycles in synchronously dividing cultures of the algal flagellate, Euglena gracilis Z photoautotrophically grown in a 24-h light-dark cycle. The intracellular levels of these three polyamines decreased as cells divided and then were enhanced as cells exited the G1 phase and proceeded through the S and G2 phases. Spermidine, BAP and DAD concentrations increased about 2.5-fold during the S phase. Putrescine and 1,3-diaminopropane levels did not vary significantly. One peak of polyamine synthesis occurred in the G1 phase prior to DNA synthesis, followed by a second more important peak during the S-G2 phases before cell division; both peaks were observed during the light period. A third minor peak was observed during the pre-G1 (or G0) phase in the dark period after mitosis had been completed. In contrast, when the cells attained the “stationary” phase of growth, there was no significant increase in the content of polyamines during the light period although spermidine and BAP increased slightly twice during the dark period (putrescine and 1,3-diaminopropane and DAD levels remained almost constant). To ascertain whether the synthesis of polyamines was merely a direct effect of the photoperiod, parallel experiments with synchronous cultures were carried out in the presence and absence of 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, a photosynthetic inhibitor. Although a slight decrease in the concentration of polyamines was observed, the three maxima of polyamines synthesis were observed as in normal cultures. These results clearly suggest that polyamine biosynthesis is closely related to DNA replication and cell division in Euglena cells.  相似文献   

3.
The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.  相似文献   

4.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

5.
The effects of ACTH and 8-Br-cAMP on growth and replication of a functional mouse adrenal tumor cell line (Y-1) were investigated. ACTH and 8-Br-cAMP both inhibited DNA synthesis and replication when added to randomly growing cell cultures. ACTH addition and serum deprivation each arrested cells in G1; an additional point of arrest in G2 occurred with 8-Br-cAMP. Cells whose growth was arrested in G1 by ACTH had a significantly larger volume and protein and RNA content compared to cells arrested in G1 by serum deprivation. When ACTH or 8-Br-cAMP was added with serum to cells arrested by serum deprivation, the wave of DNA synthesis and cell division seen with serum was abolished. ACTH and 8-Br-cAMP had no effect on the serum-induced increases in protein and RNA content, rates of leucine incorporation into protein and uridine incorporation into RNA, and RNA polymerase I activity observed in cells during the pre-replicative period. Partial inhibition of the serum-induced increase in uridine transport occurred. ACTH and cAMP do not appear to inhibit replication by generalized negative pleiotypic effects but rather to inhibit the initiation of DNA synthesis more specifically. The ACTH-arrested Y-1 cell resembles an in vivo hypertrophied adrenal cortical cell.  相似文献   

6.
Chick embryo cells which have been kept overnight at pH 6.8 in the absence of serum multiply very slowly. Only a small fraction of cells is in the S period at any given time, and the rate of uptake of 2-deoxy-D-glucose is very low. Upon raising the pH to 7.4 and adding serum (“turn-on”) the uptake of 2-deoxy-D-glucose increases immediately; the rate of DNA synthesis increases after a lag of about 4 hours, and represents an increase in the fraction of cells synthesizing DNA. The uptake of 2-deoxy-D-glucose is rapidly returned to its original low rate at any time by again lowering the pH and removing serum (“turn-off”). The synthesis of DNA in the culture remains constant or continues to rise at a markedly reduced rate following the same treatment. Lowering pH or removing serum independently of each other is less efficient at inhibiting the increase in DNA synthesis than the combined treatment but each accomplishes a similar result. Cultures which have been “turnedoff” during the early stages of the rapid increase in DNA synthesis, resume their prior rate of increase immediately if “turned-on” again within 2.5 hours. If the cultures have been “turned-off” for 5.5 hours before restoring the “turn-on,” there is a 2 hour delay before they resume an increased rate of DNA synthesis. The results indicate that chick embryo cells do not become committed to the initiation of DNA synthesis until shortly before, or at the time of the onset of the S period. Up to 96% of the cells in post-confluent cultures growing in conventional medium become labeled upon continuous, prolonged exposure to 3H-thymidine. Seventy-eight percent of the cells in serum-deprived cultures growing at a very low rate become labeled. These and other considerations suggest that the inhibition of cell multiplication by high population density or serum deprivation is caused by a lengthening of the time cells remain in the prereplicative G1 period rather than by shifting cells into a qualitatively distinct G0 period. There may, however, be a period common to all cells regardless of growth rate, in which cells are not progressing toward the S period. The length of this variable period would then determine the growth rate of a population of cells.  相似文献   

7.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

8.
Summary Effects of 1000 R, whole-body X-irradiation on the proliferative cells of the mouse duodenal crypts, in the four phases of the generation cycle; namely, the DNA synthesis phase, S; the pre-mitotic gap, G 2; the division phase or mitosis, M; and the pre-synthesis gap, G 1. As pointed out by Whitmore and Till (1964) G1 and G2 are characterized only by the fact that no DNA synthesis is taking place in these phases.In the intestinal crypts of BCF1 mice, a 1000 R whole-body X-ray exposure blocks cells in G2 for approximately 18 hours, and reduces the number of cells in S to less than 1/2 that observed in control animals during the first 12 hours after exposure. Cells synthesizing DNA, and undergoing division, remain few in number for more than 48 hours. Between 48 and 72 hours a compensatory reaction begins, and the number of cells in M and S increases from 28 at 48 hours to 150 at 72 hours and reaches a mean value of 482 at 96 hours.Work supported under the auspices of the US Atomic Energy Commission.  相似文献   

9.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

10.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

11.
Polyacrylamide gel electrophoresis of isolated cytoplasmic and chloroplast ribosomal ribonucleic acid species during the synchronous vegetative cell cycle of the eukaryote Chlamydomonas reinhardtii suggests that a separate control of cytoplasmic and chloroplast rRNA might exist. It was found that the amount of cytoplasmic rRNA linearly increased during the entire G1 phase of the cell cycle, whereas chloroplast rRNA accumulated only through 70% of the G1 period. The amount of cytoplasmic rRNA per mother cell remained constant during nuclear DNA synthesis but a gradual loss of chloroplast rRNA was noted at this time. A significant decline in all four rRNA species occurred at the time of cell division.  相似文献   

12.
The induction of DNA synthesis in Datura innoxia Mill. cell cultures was determined by flow cytometry. A large fraction of the total population of cells traversed the cell cycle in synchrony when exposed to fresh medium. One hour after transfer to fresh medium, 37% of the cells were found in the process of DNA synthesis. After 24 hours of culture, 66% of the cells had accumulated in G2 phase, and underwent cell division simultaneously. Only 10% of the cells remained in G0 or G1. Transfer of cells into a medium, 80% (v/v) of which was conditioned by a sister culture for 2 days, was adequate to inhibit this simultaneous traverse of the cell cycle. A large proportion of dividing cells could be arrested at the G0 + G1/S boundary by exposure to 10 millimolar hydroxyurea (HU) for 12 to 24 hours. Inhibition of DNA synthesis by HU was reversible, and when resuspended into fresh culture medium synchronized cells resumed the cell cycle. Consequently, a large fraction of the cell population could be obtained in the G2 phase. However, reversal of G1 arrested cells was not complete and a fraction of cells did not initiate DNA synthesis. Seventy-four percent of the cells simultaneously reached 4C DNA content whereas the frequency of cells which remained in G0 + G1 phase was approximately 17%. Incorporation of radioactive precursors into DNA and proteins identified a population of nondividing cells which represents the fraction of cells in G0. The frequency of cells entering G0 was 11% at each generation. Our results indicate that almost 100% of the population of dividing cells synchronously traversed the cell cycle following suspension in fresh medium.  相似文献   

13.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

14.
15.
MICRONUCLEAR RNA SYNTHESIS IN PARAMECIUM CAUDATUM   总被引:3,自引:2,他引:1       下载免费PDF全文
In a generation time of 8 hr in Paramecium caudatum, the bulk of DNA synthesis detected by thymidine-3H incorporation takes place in the latter part of the cell cycle. The micronuclear cycle includes a G1 of 3 hr followed by an S period of 3–3½ hr. G2 and division occupies the remaining period of the cycle. Macronuclear RNA synthesis detected by 5'-uridine-3H incorporation is continuous throughout the cell cycle. Micronuclear RNA synthesis is restricted to the S period. Ribonuclease removes 80–90% of the incorporated label. Pulse-chase experiments showed that part of the RNA is conserved and released to the cytoplasm during the succeeding G1 period.  相似文献   

16.
The biosynthesis and phosphorylation of histone fractions were measured in synchronized CHO Chinese hamster cells arrested in late G1 by hydroxyurea treatment. Hydroxyurea was found to inhibit the initiation of both DNA and histone synthesis, thus confirming the conclusion that it arrests cells in G1 slightly before the G1S boundary. However, hydroxyurea did not inhibit the phosphorylation of histone f1 or histone f2a2. The phosphorylation of histone f1, which normally is absent in early G1, begins 2 hr prior to DNA synthesis. In the presence of hydroxyurea, f1 phosphorylation occurs on schedule at this same time in G1, resulting in significant G1-phase f1 phosphorylation. This offers strong evidence that (a) f1 phosphorylation is not restricted to S phase; (b) “old” f1 which was synthesized in previous cell cycles is phosphorylated in G1 before “new” f1 which is synthesized in S phase; and (c) G1-phase f1 phosphorylation does not require new histone or new DNA synthesis.Histone f1 phosphorylation was observed to occur at accelerated rates in S phase over phosphorylation rates observed in late G1-arrest. Data support the proposal that three different levels of f1 phosphorylation occur during the cell cycle: (1) a G1-related phosphorylation of “old” f1; (2) an S-related phosphorylation of both “old” and “new” f1; and (3) a superphosphorylation of f1 associated with chromosome condensation during the G2 to M transition. It is also possible that a limited proportion of f1 may be phosphorylated in G1, perhaps at the initial DNA synthesis sites, and that an increased proportion of f1 is phosphorylated in S as DNA is synthesized. Similarities between the kinetics of histone f1 phosphorylation and the association of DNA with lipoprotein in synchronized control and hydroxyurea-treated cells suggest an involvement of f1 phosphorylation in cell-cycle-dependent chromatin structural changes.  相似文献   

17.
Effects of chlorambucil on human chromosomes   总被引:1,自引:0,他引:1  
No significant amount of chromosomal damage was found in the 48-h cultures of lymphocytes of 18 patients who had been treated with the bifunctional alkylating agent chlorambucil (CBC). However, there was suggestive evidence of chromatid damage (i.e. of types attributable to damage during or after DNA synthesis in the cell cycle). In marrow cells of 3 patients given a single large dose of chlorambucil (equivalent to 2 days' normal treatment) there was also suggestive evidence of induced chromatide-type damage.Extensive series of in vitro experiments yielded evidence that (a) exposure of human lymphocytes over the whole period of culture showed chromatid-type damage; (b) this damage increased sharply from concentrations of 0.5 μg/ml to3.0 μg/ml; (c) although chromatide-type damage always predominated, there was suggestive evidence also of chromosome-type aberrations attributable to damage occuring in the G0/G1 period, although some or all of this could be attributed to “derived” chromatid damage; (d) even if lymphocytes were only exposed during the G0 or G1 periods of the cycle, damage was found in the subsequent metaphases and it was almost entirely of the chromatid type; (e) much more damage occurred in lymphocytes exposed for varying periods to the drugs after stimulation by phytohaemagglutinins than in those exposed in whole blood, or in medium before stimulation; (f) damaged occurred in lymphocytes exposed to the drug while in S but not exposed only when in G2; (g) no evidence was found that unschaduled DNA synthesis during G0 or G1 was induced by the drug; (h) there appeared to be no delay caused by the drug in the time at which cells reached the first “S” phase in culture but there was some evidence consistent with prolongation of “S” in cells exposed in culture; (i) there was evidence that CBC alone could stimulate lymphocyte tto DNA synthesis, and that a few cells proceeded in the cycle to prophase, or even metaphase. However, there was a considerable amount of cell-killing during CBC-stimulated DNA synthesis.  相似文献   

18.
The replication time and pattern have been investigated in hepatoma cells induced by feeding 3'Me-DAB to male rats for 5 months. With the use of tritiated thymidine as a DNA label along with autoradiography, mitotic nuclear labeling has been studied 0.5 to 72 hours after the administration of the label. The following time intervals have been estimated: replication time, 31 hours; DNA synthesis, 17 hours; G2 plus Mitosis, 2 hours; G1, 12 hours. Only about 8 per cent of the tumor cell (interphase) population is "flash" labeled, following a single dose of 50 µC of H3TDR. This group of cells has been followed through three cycles of division. The repeated rhythmic passage of tumor cells through cell division is similar to that previously reported for normal liver cells in the growing rat. However, tumor cells have longer replication and DNA synthesis times. In addition, the several time intervals studied vary more in the tumor cell population than they do in the growing normal cell population.  相似文献   

19.
The methylation of nucleic acids has been investigated during the cell cycle of an asparagine dependent strain of transformed fibroblasts (BHK 21 HS 5). The synchrony was carried out by a partial asparagine starvation of cells for 24 hours. The amino acid supply induced all cells to enter synchronously the G1 phase. Methylation and DNA synthesis were respectively measured by pulsed [methyl-14C] methionine and [methyl-3H] thymidine incorporation. DNA methylation followed a biphasic pattern with maximal methyl incorporations during both S phase and mitosis. A partial desynchronisation induced the S phase of the second cycle to proceed before all the cells have achieved their division. Hydroxyurea was used in order to inhibit the DNA synthesis of cells entering the second cell cycle, which might interfer with the mitosis of the first one. The inhibitor was added either at the first beginning of cell division or during all the G1 phase. In both conditions it suppressed 3H thymidine incorporation of the second cycle. However, mitosis took place and methylations occurred as in previous experiments. The DNA methylation of the mitotic phase in the first cell cycle could thus be dissociated from the classical post-synthetic DNA maturation and did not correspond to any DNA methylation appearing in the course of the second cell cycle.  相似文献   

20.
A comparative study was made of the toxic properties of actinomycin D and X-rays using synchronized populations of Chinese hamster cells cultured in vitro. X-irradiated cells are most resistant in the latter half of the DNA synthetic period (late S). While cells treated with actinomycin D appear to go through a survival maximum at the same age, they are most resistant after the completion of DNA synthesis; i.e. in G2 (or G2-mitosis). In spite of these differences, we found that actinomycin D damage in late S cells interacts with X-ray damage. Thus, a common locus for the site of actions of both agents is suggested which may be in or around the genome of a cell in view of the well-known DNA binding properties of actinomycin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号