首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.  相似文献   

7.
The phosphoinositide 3-kinase (PI3K)/Akt pathway is commonly activated in cancer; therefore, we investigated its role in hypoxia-inducible factor-1alpha (HIF-1alpha) regulation. Inhibition of PI3K in U87MG glioblastoma cells, which have activated PI3K/Akt activity secondary to phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation, with LY294002 blunted the induction of HIF-1alpha protein and its targets vascular endothelial growth factor and glut1 mRNA in response to hypoxia. Introduction of wild-type PTEN into these cells also blunted HIF-1alpha induction in response to hypoxia and decreased HIF-1alpha accumulation in the presence of the proteasomal inhibitor MG132. Akt small interfering RNA (siRNA) also decreased HIF-1alpha induction under hypoxia and its accumulation in normoxia in the presence of dimethyloxallyl glycine, a prolyl hydroxylase inhibitor that prevents HIF-1alpha degradation. Metabolic labeling studies showed that Akt siRNA decreased HIF-1alpha translation in normoxia in the presence of dimethyloxallyl glycine and in hypoxia. Inhibition of mammalian target of rapamycin (mTOR) with rapamycin (10-100 nmol/L) had no significant effect on HIF-1alpha induction in a variety of cell lines, a finding that was confirmed using mTOR siRNA. Furthermore, neither mTOR siRNA nor rapamycin decreased HIF-1alpha translation as determined by metabolic labeling studies. Therefore, our results indicate that Akt can augment HIF-1alpha expression by increasing its translation under both normoxic and hypoxic conditions; however, the pathway we are investigating seems to be rapamycin insensitive and mTOR independent. These observations, which were made on cells grown in standard tissue culture medium (10% serum), were confirmed in PC3 prostate carcinoma cells. We did find that rapamycin could decrease HIF-1alpha expression when cells were cultured in low serum, but this seems to represent a different pathway.  相似文献   

8.
9.
10.
11.
12.
13.
Increased expression of vascular endothelial growth factor (VEGF) contributes to the growth of many tumors by increasing angiogenesis. Although hypoxia is a potent inducer of VEGF, we previously showed that epidermal growth factor receptor amplification and loss of PTEN, both of which can increase phosphatidylinositol-3-kinase (PI3K) activity, increase VEGF expression. Using both adenoviral vectors and a cell line permanently expressing constitutively active myristoylated Akt (myrAkt), we show that activation of Akt, which is downstream of PI3K, increases VEGF expression in vitro and increases angiogenesis in a Matrigel plug assay. Transient transfection experiments using reporter constructs containing the VEGF promoter showed that up-regulation of VEGF by Akt is mediated through Sp1 binding sites located in the proximal promoter. Small interfering RNA directed against Sp1 prevented the induction of VEGF mRNA in response to myrAkt but not to hypoxia. Expression of myrAkt is associated with increased phosphorylation of Sp1 and its increased binding to a probe corresponding to the -88/-66 promoter region. In conclusion, our results indicate that Sp1 is required for transactivation of the VEGF by Akt. Others have proposed that the PI3K/Akt pathway can increase VEGF expression via the hypoxia-inducible factor 1 (HIF-1); however, our results suggest an alternative mechanism can also operate.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Hypoxia inducible factor 1 (HIF-1), a key regulator for adaptation to hypoxia, is composed of HIF-1alpha and HIF-1beta. In this study, we present evidence that overexpression of mitochondria-located thioredoxin 2 (Trx2) attenuated hypoxia-evoked HIF-1alpha accumulation, whereas cytosolic thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount. Transactivation of HIF-1 is decreased by overexpression of Trx2 but stimulated by Trx1. Inhibition of proteasomal degradation of HIF-1alpha in Trx2-overexpressing cells did not fully restore HIF-1alpha protein levels, while HIF-1alpha accumulation was enhanced in Trx1-overexpressing cells. Reporter assays showed that cap-dependent translation is increased by Trx1 and decreased by Trx2, whereas HIF-1alpha mRNA levels remained unaltered. These data suggest that thioredoxins affect the synthesis of HIF-1alpha. Trx1 facilitated synthesis of HIF-1alpha by activating Akt, p70S6K, and eIF-4E, known to control cap-dependent translation. In contrast, Trx2 attenuated activities of Akt, p70S6K, and eIF-4E and provoked an increase in mitochondrial reactive oxygen species production. MitoQ, a mitochondria specific antioxidant, reversed HIF-1alpha accumulation as well as Akt activation under hypoxia in Trx2 cells, supporting the notion of translation control mechanisms in affecting HIF-1alpha protein accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号