首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetate, the main end product of ethanol metabolism in the liver and a substrate of the cerebral small-pool Krebs-cycle, was tested for its ability to abate an ethanol withdrawal syndrome. Male Sprague-Dawley derived rats were rendered physically dependent on ethanol by intragastric administration of ethanol at a dosage of 9 to 15 grams per kilogram per day over a 4-day period. Oral administration of acetate was effective in abating the tremulous component of the ethanol withdrawal syndrome.  相似文献   

2.
R F Derr  M Derr 《Life sciences》1985,36(8):763-767
An ethanol withdrawal syndrome was elicited by withholding ethanol from physically dependent, male Sprague-Dawley rats. Ethanol dependence had been induced by intragastric administration of ethanol at a dosage of 9 to 15 grams per kilogram per day over a four-day period. Oral administration of 3-hydroxybutyrate, a compound which is elevated in blood of ethanol dependent rats and is a substrate of both the cerebral small-pool and large-pool Krebs-cycle, was effective in suppressing the tremulous component of the ethanol withdrawal syndrome. 3-Hydroxybutyrate did not function as a central nervous system depressant at the dose levels employed.  相似文献   

3.
Acute or chronic intoxication of rats with ethanol (intragastric administration at a dose of 8 g/kg or free-choice drinking of 10% ethanol for 3 months) produced no significant changes in contractile function, glycogen content, glucose uptake and lactate release in isolated hearts. Withdrawal syndrome simulated in rats following a short period of severe intoxication with ethanol at a dose of 4-5 g/kg twice daily has demonstrated a 15 and 28% decrease in peak systolic pressure and tension time index, respectively. In this case glucose uptake and lactate release were 2 times higher. Changes in glycogen level were observed three days after the last ethanol administration. The rats, survived after the abstinence period, revealed areas of perivascular myocardial necrosis. It is concluded that withdrawal syndrome plays an important role in pathogenesis of alcoholic cardiomyopathy.  相似文献   

4.
Withdrawal syndrome in rats was induced after ethanol administration in a dose of 4-5 g/kg b. w. twice daily for 5 consecutive days. Creatine phosphokinase and lactate dehydrogenase release from the isolated heart and catecholamine distribution in the heart have been investigated in rats suffering from alcohol withdrawal syndrome. Maximum rate of enzyme release was observed on the third day of withdrawal. The density of catecholamine neurons in intact hearts and the hearts of rats sacrificed 2-6 hours, 1, 3, and 7 days after the last ethanol administration was 86, 64, 28, 7 and 38%, respectively. The area of extraneuronal catecholamine distribution accounted for 2, 19, 46, 82 and 4%. Synchronous changes observed in catecholamine distribution and the rate of enzyme release suggest that catecholamines act as a trigger of heart damage in rats with alcohol withdrawal syndrome.  相似文献   

5.
Forebrain arterioles were analyzed histochemically to determine the effects of an acute administration of ethanol on key enzymes of aerobic and anaerobic metabolism as well as on the hexose monophosphate shunt in rats. The enzymes were glucose 6-phosphate dehydrogenase, cytochrome oxidase, lactate dehydrogenase, beta-hydroxybutyrate dehydrogenase, and isocitrate dehydrogenase. All enzymes were quantified under two conditions: 1 h and 2 days after ethanol administration. Significant changes were noted in four of the five enzymes measured after 1 h and in all five enzymes when measured 2 days after ethanol administration. Our data suggest that ethanol may cause impaired metabolism in the forebrain microvasculature, which, in turn, may account for some of the characteristic behavioral effects of acute ethanol administration.  相似文献   

6.
Ethanol oxidation causes redox effects. The coupling of this oxidation via NADH to intermediary metabolism was studied in order to reveal the underlying mechanisms. Isolated rat hepatocytes were incubated with [1,1-2H2]-, (1R)-[1-2H]- and (1S)-[1-2H]-ethanol and the 2H incorporation was measured in lactate, beta-hydroxybutyrate, fumarate, malate, succinate, alpha-oxoglutarate and citrate. The results differed in the following ways from results obtained in intact rats. Lactate became labelled to an increasing extent, and in more than one position, indicating labelling of pyruvate. A small and constant fraction of malate and fumarate was formed without access to [2H]coenzyme. Addition of aspartate increased this fraction, which was concluded to be formed in the mitochondria. Citrate was essentially unlabelled. The 2H from (1R)-[1-2H]ethanol contributed to malate to a larger extent and to beta-hydroxybutyrate to a smaller extent, and 2H from (1S)-[1-2H]ethanol contributed to lactate to a smaller extent. These results indicate that the exchange via shuttle system was less efficient in isolated hepatocytes than in intact rats. The 2H incorporation was independent of concentration of [1,1-2H2]ethanol when this was above 5mM. Additions known to increase ethanol elimination, and cyanamide, which decreases it, had no marked effect on the 2H incorporation. This indicates equilibration of the NADH bound to alcohol dehydrogenase with free NADH. Disulfiram and cyanamide caused a decrease in the relative incorporation from (1S)-[1-2H]ethanol into malate in liver of intact rats. Addition of cyanamide to incubations with hepatocytes resulted in a decrease of the contribution of 2H from (1S)-[1-2H]ethanol in lactate, beta-hydroxybutyrate and malate. This indicates that acetaldehyde was only oxidized in the mitochondrial compartment.  相似文献   

7.
Cerebral forebrain arterioles and neuropil were analyzed histochemically to determine the effects of chloral hydrate anesthesia on key enzymes of aerobic and anaerobic metabolism, as well as the hexose monophosphate shunt in rats. Significant decreases were observed in cytochrome oxidase, and beta-hydroxybutyrate dehydrogenase in arterioles, while glucose-6-phosphate dehydrogenase and isocitric dehydrogenase showed a significant increase and lactate dehydrogenase showed no significant change. In the neuropil, cytochrome oxidase, isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase showed significant increases following chloral hydrate administration, while beta-hydroxybutyrate dehydrogenase and lactate dehydrogenase showed no significant changes. These data suggest that surgical anesthetic levels of chloral hydrate can impair forebrain metabolism which may lead to altered electrophysiological responses.  相似文献   

8.
H Kono  M Fujii  T Sokabe  J Kaneshige 《Enzyme》1979,24(3):142-151
To study the effects of ethanol on liver chronically injured by CCl4, activities of hepatic enzymes related to ethanol oxidation, influences of ethanol on hepatic metabolites, and blood ethanol disappearance were observed. (1) Activities of alcohol dehydrogenase, low- and high-Km aldehyde dehydrogenase, microsomal ethanol-oxidizing system and drug-metabolizing enzyme were remarkably decreased in the injured liver. (2) Increases in lactate/pyruvate and beta-hydroxybutyrate/acetacetate ratios were shown in control liver 2 h after ethanol ingestion. Similar but less pronounced effects of ethanol on the 'redox state' were also seen in rats with chronic liver injury. (3) Delay in ethanol disappearance was not observed until 12 h after ethanol ingestion. The ethanol-induced changes in the redox state in the injured liver were similar to those in controls. Higher ethanol concentrations in blood from rats with chronic liver injury could be related to potentiate the injured liver.  相似文献   

9.
Withania somnifera (WS) or its psychotropic preparation is known to play a critical role in morphine, alcohol and benzodiazepines addiction. This study investigates the role of WS in acute ethanol and withdrawal from chronic ethanol consumption using elevated plus maze paradigm in rats. Acute administration of ethanol (1.5-2 g/kg, ip) triggered anxiolytic effect and withdrawal from prolonged ethanol (9% v/v ethanol, 15 days) consumption elicited enhanced behavioral despair (anxiety). Acute administration of WS (50 mg/kg, oral) potentiated the anxiolytic action of subeffective dose of ethanol (0.5 or 1 g/kg, ip). Moreover, the ethanol withdrawal anxiety was markedly antagonized in dose dependent manner by WS at 200 and 500 mg/kg or higher dose of ethanol (2.5 g/kg). However, co-administration of subeffective doses of WS (50 mg/kg, oral) and ethanol also attenuated withdrawal-induced anxiety due to chronic ethanol (9% v/v ethanol, 15 days) consumption. The results suggest the protective effect of WS in the management of ethanol withdrawal reactions.  相似文献   

10.
Li J  Li YH  Zhang XH  Zhu XJ  Ge YB  Yuan XR 《生理学报》2003,55(2):147-152
采用免疫组织化学的方法,检测急性、慢性乙醇作用及戒断后大鼠伏核内cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)磷酸化的变化。结果显示,急性腹腔注射乙醇后15min,伏核内磷酸化CREB(Phospho-CREB,p-CREB)蛋白明显增加,30min后达高峰,至1和6h后仍明显高于对照组。而慢性饮乙醇溶液显著降低大鼠伏核内P—CREB蛋白含量,在撤除乙醇后24、72h时,伏核内p—CREB蛋白含量仍明显较低,戒断后7d,恢复到正常水平。结果表明,急性乙醇处理增加伏核内CREB磷酸化作用,而慢性乙醇作用则降低伏核内CREB磷酸化作用,这可能是乙醇依赖的分子机制之一。  相似文献   

11.
Organic acidurias are genetic disorders of mitochondrial metabolism that lead to the accumulation of organic acids in tissues and biological fluids. It has been demonstrated that interaction of carnitine with the cellular coenzyme A (CoA) pool, through the production of acyl-carnitines, is potentially critical for maintaining normal cellular metabolism under condition of impaired acyl-CoA use and that exposure of humans and other mammals to ethanol leads to impairment of mitochondrial function. The aim of the present study was to evaluate the role of chronic administration of ethanol on urinary excretion of short-chain organic acids and endogenous carnitines in rats. The data reported show that chronic administration of ethanol significantly increases urinary excretion of propionate, methylmalonate, as well as free acetate, butyrate, pyruvate, lactate, and beta-hydroxybutyrate. Chronic administration of propranolol abolished ethanol-dependent accumulation of propionate, suggesting involvement of beta-adrenergic mechanisms. Increased formation of propionate and methylmalonate was associated with decreased plasma carnitine levels and with increased excretion of specific acyl-carnitines, corresponding to the accumulating acyl groups. Our data indicate that chronic alcohol ingestion induces increased excretion of selected organic acids and that the endogenous carnitine pool might exert a protective role against the deleterious effects of accumulating short-chain organic acids.  相似文献   

12.
Chicken liver mitochondria were isolated in relatively pure form as indicated by electron microscopy and marker enzyme assay. The rate of respiration, respiratory control index and ADP/O ratios with several different substrates indicated that chicken liver mitochondria are more uncoupled than rat liver mitochondria. Chickens have ten-fold higher malate concentrations in liver than do rats, 2-oxoglutarate was also more abundant in chicken livers. Fasted birds had a five-fold increase in beta-hydroxybutyrate as compared with fed birds; whereas malate and lactate concentrations decreased. Fasted birds had increased levels of isocitrate dehydrogenase (NADP dependent) and lactate dehydrogenase in the cytosol, and increased malate dehydrogenase (NAD dependent), isocitrate dehydrogenase (NADP dependent) and malic enzyme activities in the mitochondria.  相似文献   

13.
Abstract: The pharmacological properties of γ-aminobutyric acidA (GABAA) receptors are altered by prolonged exposure to ethanol both in vivo and in vitro. We have shown previously that prolonged ethanol exposure elicits selective alterations in various GABAA receptor subunit mRNA levels in rat cerebral cortex. Some of these effects are rapidly reversed during ethanol withdrawal. The present study was conducted to determine the effects of prolonged ethanol exposure (dependence) and ethanol withdrawal on cerebral cortical peptide expression for several subunits. GABAA receptor α1 subunit peptide levels were decreased by nearly 40%, whereas α4 subunit peptide levels were increased by 27% in both ethanol-dependent and withdrawn rats. These changes correlate well with observed alterations in mRNA levels following prolonged ethanol exposure in dependent rats, but do not match the effects on mRNA levels during ethanol withdrawal. β2/3 subunit peptide levels increased by ~32% in both ethanol-dependent rats and rats undergoing ethanol withdrawal. We observed a 30–60% increase in γ1 subunit peptide levels in both dependent rats and those undergoing withdrawal, also correlating with the previous report on ethanol-induced alterations in mRNA levels. Peptide levels for γ2 subunits did not differ from control values in either condition. These findings show that specific alterations in GABAA receptor subunit peptide levels are associated with ethanol dependence in rats. GABAA receptor subunit peptide expression is more stable than mRNA expression, and mRNA levels are not representative of peptide expression during ethanol withdrawal. These findings are consistent with the suggestion that alterations in GABAA receptor gene expression underlie the functional properties of GABAA receptors in ethanol-dependent rats and those undergoing ethanol withdrawal.  相似文献   

14.
In synaptosomal fractions of rat brain the activities of phospholipase A2 and the phospholipid base-exchange enzymes are highly dependent on external Ca2+ concentrations. Their activity is inhibited by the presence of 50 mM ethanol in vitro. Administration of ethanol to rats by inhalation causes a progressive increase in the activity of these enzymes in synaptosomal preparations at all Ca2+ concentrations studied. The increased activity of these enzymes persists in preparations from rats undergoing a physical syndrome of withdrawal from ethanol. The addition of ethanol in vitro to preparations from animals that had received ethanol in vivo had no significant effect on enzyme activity. The results are discussed in relation to the possible roles of membrane lipid metabolism and synaptic Ca2+ sensitivity in ethanol tolerance and physical dependence.  相似文献   

15.
Adult male rats were fed a liquid diet providing 35% of the calories as ethanol, while pair-fed controls received the corresponding diet with alcohol replaced by an equicaloric concentration of sucrose. After 1 month, lactate/pyruvate (L/P) and beta-hydroxybutyrate/acetoacetate (beta-HB/AcAc) ratios in the livers were determined under five different conditions: (1) both diets present up to the time of sacrifice, (2) ethanol diet replaced by control diet for 24 h before sacrifice, (3) ethanol diet replaced by control diet for 48 h before sacrifice, (4) as in the preceding, followed by intraperitoneal (i.p.) injection of ethanol, 1 g/kg, 1 h before sacrifice, (5) as in the preceding, but i.p. injection 3 h before sacrifice. The L/P ratio was significantly higher in the alcohol group than in controls under the first experimental condition, but the groups did not differ under the other four conditions. The beta-HB/AcAc ratio was also significantly higher in the alcohol group under the first condition. This difference disappeared in the second and third conditions. Under the fourth and fifth conditions the beta-HB/AcAc ratio was significantly higher in the controls. The results are compatible with an adaptive increase in mitochondrial reoxidation of NADH in the chronic alcohol groups, but the possibility of a change due to alcohol withdrawal can not be excluded.  相似文献   

16.
The effects of melatonin on several parameters of carbohydrate and lipid metabolism were investigated in exercised and nonexercised rats. Animals were run to exhaustion on a rodent treadmill at 24 m/min and a 12% slope. Exercise resulted in a significant hypoglycemia and increased plasma levels of lactate and beta-hydroxybutyrate, together with a significant reduction of glycogen in muscle and liver. Muscle and liver glycogen content was elevated and plasma free fatty acid decreased in nonexercised animals receiving melatonin (0.5 or 2.0 mg/kg i.p). Melatonin at 2.0 mg/kg reduced plasma lactate and increased lactate concentration in liver. When compared to untreated exercised animals glycemia and muscle and liver glycogen content were significantly higher in melatonin-treated exercised animals, while plasma and liver lactate and plasma beta-hydroxybutyrate were significantly reduced. Our data indicate that melatonin preserves glycogen stores in exercised rats through changes in carbohydrate and lipid utilization.  相似文献   

17.
Intravenous administration of naloxone (0.5 mg/kg) to morphine dependent rats elicited classical autonomic and behavioral symptoms of narcotic abstinence including hypertension, tachycardia, withdrawal body shakes, escape attempts, diarrhea, etc. Pretreatment of dependent rats with either clonidine (3–90 μg/kg) or guanfacine (3–900 μg/kg) produced a dose-dependent reduction in the hypertensive response to subsequent injection of naloxone. Clonidine was about 12 times more potent than guanfacine in inhibiting this autonamic symptom of withdrawal. Both drugs were less effective at blocking body shakes and escapes, however, when all symptoms were combined in a ranked score, guanfacine was less effective than clonidine at reducing the ranked abstinence intensity score. Since clonidine blocked the autonomic component of withdrawal at doses more consistent with its clinical anti-withdrawal actions, it is possible that 1) measurement of behavioral signs of withdrawal in rats is a less sensitive index than is measurement of autonomic changes associated with withdrawal, or, 2) a reduction in autonomic outflow in general is most relevant to suppressing the apparent intensity of the abstinence syndrome.  相似文献   

18.
Lactate-stimulated ethanol oxidation in isolated hepatocytes   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Hepatocytes isolated from starved rats and incubated without other substrates oxidized ethanol at a rate of 0.8-0.9mumol/min per g wet wt. of cells. Addition of 10mm-lactate increased this rate 2-fold. 2. Quinolinate (5mm) or tryptophan (1mm) decreased the rate of gluconeogenesis with 10mm-lactate and 8mm-ethanol from 0.39 to 0.04-0.08mumol/min per g wet wt. of cells, but rates of ethanol oxidation were not decreased. From these results it appears that acceleration of ethanol oxidation by lactate is not dependent upon the stimulation of gluconeogenesis and the consequent increased demand for ATP. 3. As another test of the relationship between ethanol oxidation and gluconeogenesis, the initial lactate concentration was varied from 0.5mm to 10mm and pyruvate was added to give an initial [lactate]/[pyruvate] ratio of 10. This substrate combination gave a large stimulation of ethanol oxidation (from 0.8 to 2.6mumol/min per g wet wt. of cells) at low lactate concentrations (0.5-2.0mm), but rates remained nearly constant (2.6-3.0mumol/min per g wet wt. of cells) at higher lactate concentrations (2.0-10mm). 4. In contrast, owing to the presence of ethanol, the rate of glucose synthesis was only slightly increased (from 0.08 to 0.12mumol/min per g wet wt. of cells) between 0.5mm- and 2.0mm-lactate and continued to increase (from 0.12 to 0.65mumol/min per g wet wt. of cells) with lactate concentrations between 2 and 10mm. 5. In the presence of ethanol, O(2) uptake increased with increasing substrate concentration over the entire range. 6. Changes in concentrations of glutamate and 2-oxoglutarate closely paralleled changes in the rate of ethanol oxidation. 7. In isolated hepatocytes, rates of ethanol oxidation are lower than those in vivo apparently because of depletion of malate-aspartate shuttle intermediates during cell preparation. Rates are returned to those observed in vivo by substrates that increase the intracellular concentration of shuttle metabolites.  相似文献   

19.
In hepatocytes isolated from fed rats, acute ethanol pretreatment (at a dose of 5.0 g/kg body wt.) did not change rates of O2 uptake. In cells from starved animals, acute ethanol pretreatment increased O2 uptake by 17-29%. The increased O2 uptake in hepatocytes from starved rats was not accompanied by increased rates of ethanol oxidation, but was accompanied by increased rates of gluconeogenesis under some conditions. The provision of ethanol (10 mM) as a substrate to cells from fed or starved rats decreased O2 uptake in the absence of other substrates or in the presence of lactate, and increased it in the presence of pyruvate or lactate and pyruvate. The results of this study show that the acute effects of ethanol on liver O2 uptake are dependent on the physiological state of the liver. Previously reported large (2-fold) increases in O2 uptake after acute ethanol pretreatment may have been an artefact owing to low control uptake rates (approximately 1.8 micromol/min per g wet wt. of cells) in the liver preparation used. The ATP contents (2.4-2.6 micromol/g wet wt. of cells) and rates of O2 uptake (2.5-5.0 micromol/min per g wet wt. of cells) of cells used in the present study were the same as values reported under conditions close to those in vivo. Therefore the increase in O2 uptake in cells from starved rats after acute ethanol pretreatment is likely to be of physiological significance.  相似文献   

20.
Ethanol withdrawal increases nociception after the injection of formalin into the rat's temporomandibular joint (TMJ). Little is known about the neurological basis for hyperalgesia induced by ethanol withdrawal, but it has been reported that ethanol can potentiate the response of transient receptor potential vanilloid receptor-1 (TRPV1) in superficial tissues. The present study was designed to test the hypothesis that peripheral TRPV1 could be involved on nociceptive behavioral responses induced by the injection of formalin into the TMJ region of rats exposed to chronic ethanol administration and ethanol withdrawal. Behavioral hyperalgesia was verified 12 h after ethanol withdrawal in rats that drank an ethanol solution (6.5%) for 10 days. In another group submitted to the same ethanol regimen, the selective vanilloid receptor antagonist capsazepine (300, 600 or 1200 microg/25 microl) or an equal volume of vehicle were injected into the TMJ regions 30 min before the TMJ formalin test. The local injections of capsazepine reduced the increased nociceptive responses induced by ethanol withdrawal. The effect of capsazepine on rats that did not drink ethanol was not significant. These results indicate that the peripheral TRPV1 can contribute to the hyperalgesia induced by ethanol withdrawal on deep pain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号