首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Minor pilin subunits are conserved in Vibrio cholerae type IV pili   总被引:1,自引:0,他引:1  
The nucleotide sequences of five open reading frames within the Vibrio cholerae NAGV14 type IV pilus gene cluster were determined. The genes showed high homology to the mannose-sensitive hemagglutinin (MSHA) pilus genes mshB, mshC, mshD, mshO and mshP. PCR analysis showed that a MSHA-like gene cluster is highly conserved among different V. cholerae strains, with the exception of the previously reported major pilin subunit. Recombinant MshB and MshO proteins were purified and specific antiserum was raised to each of them. Western blotting analyses showed that these antisera reacted with purified NAGV14 and MSHA pili. The results suggested that MshB and MshO are minor components of the pilus fiber. Although there was no cross-reaction between the major pilin subunits of NAGV14 and MSHA pili, minor components seemed to be highly homologous and immunologically cross-reactive.  相似文献   

2.
Bacterial surface structures called pili have been studied extensively for their role as possible colonization factors. Most sequenced Vibrio genomes predict a variety of pili genes in these organisms, including several types of type IV pili. In particular, the mannose-sensitive hemagglutinin (MSHA) and the PilA pili, also known as the chitin-regulated pilus (ChiRP), are type IVa pili commonly found in Vibrio genomes and have been shown to play a role in the colonization of Vibrio species in the environment and/or host tissue. Here, we report sequence comparisons of two type IVa pilin subunit genes, mshA and pilA, and their corresponding amino acid sequences, for several strains from the three main human pathogenic Vibrio species, V. cholerae, V. parahaemolyticus, and V. vulnificus. We identified specific groupings of these two genes in V. cholerae, whereas V. parahaemolyticus and V. vulnificus strains had no apparent allelic clusters, and these genes were strikingly divergent. These results were compared with other genes from the MSHA and PilA operons as well as another Vibrio pili from the type IVb group, the toxin co-regulated pilus (TCP) from V. cholerae. Our data suggest that a selective pressure exists to cause these strains to vary their MSHA and PilA pilin subunits. Interestingly, V. cholerae strains possessing TCP have the same allele for both mshA and pilA. In contrast, V. cholerae isolates without TCP have polymorphisms in their mshA and pilA sequences similar to what was observed for both V. parahaemolyticus and V. vulnificus. This data suggests a possible linkage between host interactions and maintaining a highly conserved type IV pili sequence in V. cholerae. Although the mechanism underlying this intriguing diversity has yet to be elucidated, our analyses are an important first step towards gaining insights into the various aspects of Vibrio ecology.  相似文献   

3.
KSF-1phi, a novel filamentous phage of Vibrio cholerae, supports morphogenesis of the RS1 satellite phage by heterologous DNA packaging and facilitates horizontal gene transfer. We analyzed the genomic sequence, morphology, and receptor for KSF-1phi infection, as well as its phylogenetic relationships with other filamentous vibriophages. While strains carrying the mshA gene encoding mannose-sensitive hemagglutinin (MSHA) type IV pilus were susceptible to KSF-1phi infection, naturally occurring MSHA-negative strains and an mshA deletion mutant were resistant. Furthermore, d-mannose as well as a monoclonal antibody against MSHA inhibited infection of MSHA-positive strains by the phage, suggesting that MSHA is the receptor for KSF-1phi. The phage genome comprises 7,107 nucleotides, containing 14 open reading frames, 4 of which have predicted protein products homologous to those of other filamentous phages. Although the overall genetic organization of filamentous phages appears to be preserved in KSF-1phi, the genomic sequence of the phage does not have a high level of identity with that of other filamentous phages and reveals a highly mosaic structure. Separate phylogenetic analysis of genomic sequences encoding putative replication proteins, receptor-binding proteins, and Zot-like proteins of 10 different filamentous vibriophages showed different results, suggesting that the evolution of these phages involved extensive horizontal exchange of genetic material. Filamentous phages which use type IV pili as receptors were found to belong to different branches. While one of these branches is represented by CTXphi, which uses the toxin-coregulated pilus as its receptor, at least four evolutionarily diverged phages share a common receptor MSHA, and most of these phages mediate horizontal gene transfer. Since MSHA is present in a wide variety of V. cholerae strains and is presumed to express in the environment, diverse filamentous phages using this receptor are likely to contribute significantly to V. cholerae evolution.  相似文献   

4.
5.
6.
Cholera toxin secretion is dependent upon the extracellular protein secretion apparatus encoded by the eps gene locus of Vibrio cholerae . Although the eps gene locus encodes several type four prepilin-like proteins, the peptidase responsible for processing these proteins has not been identified. This report describes the identification of a prepilin peptidase from the V. cholerae genomic database by virtue of its homology with the PilD prepilin peptidase of Pseudomonas aeruginosa . Plasmid disruption or deletion of this peptidase gene in either El Tor or classical V. cholerae O1 biotype strains results in a dramatic decrease in cholera toxin secretion. In the case of the El Tor biotype mutants, surface expression of the type 4 pilus responsible for mannose-sensitive haemagglutination is abolished. The cloned V. cholerae peptidase processes either EpsI or MshA preproteins when co-expressed in E. coli . Mutation of the V. cholerae peptidase gene also results in a defect in virulence and decreased levels of OmpU. The V. cholerae peptidase gene sequence shows 80% homology with the Vibrio vulnificus VvpD type 4 prepilin peptidase required for pilus assembly and cytolysin secretion in V. vulnificus . Accordingly, the V. cholerae type 4 prepilin peptidase required for pilus assembly and cholera toxin secretion has been designated VcpD.  相似文献   

7.
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.  相似文献   

8.
9.
In Pseudomonas aeruginosa, most proteins involved in type IVa pilus (T4aP) biogenesis are highly conserved except for the major pilin PilA and the minor pilins involved in pilus assembly. Here we show that each of the five major pilin alleles is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes. The sequences of the minor pilin genes of strains with group III and V pilins are identical, suggesting that these groups diverged recently through further evolution of the major pilin cluster. Both gene clusters are localized on a single ‘pilin island’ containing putative tRNA recombinational hotspots, and a similar organization of pilin genes was identified in other Pseudomonas species. To address the biological significance of group‐specific differences, cross‐complementation studies using group II (PAO1) and group III (PA14) minor pilins were performed. Heterologous minor pilins complemented twitching motility to various extents except in the case of PilX, which was non‐functional in non‐native backgrounds. A recombinant PA14 strain expressing the PAO1 minor pilins regained motility only upon co‐introduction of the PA14 pilX gene. Comparison of PilX and PilQ secretin sequences from group II, III and V genomes revealed discrete regions of sequence that co‐varied between groups. Our data suggest that changes in PilX sequence have led to compensatory changes in the PilQ secretin monomer such that heterologous PilX proteins are no longer able to promote opening of the secretin to allow pili to appear on the cell surface.  相似文献   

10.
11.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.  相似文献   

12.
Pili were found on the cell surface of non-adhesive Vibrio cholerae O1 Biotype E1 Tor as well as the adhesive strain. Purified pili of the adhesive and non-adhesive strains were morphologically, electrophoretically, and immunologically, indistinguishable from each other. The molecular weights of both pilin (subunit protein of the pilus) were about 16,000 daltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These 16 kDa pili are different from the pilus colonization factor, which is a 20.5 kDa protein, reported by Taylor et al. The 16 kDa pili of Vibrio cholerae O1 Biotype E1 Tor have hemagglutinating activity, but may have no role in colonization, because non-adhesive strains also have such pili.  相似文献   

13.
The structure of the N-terminal-truncated Type IVb structural pilin (t-PilS) from Salmonella typhi was determined by NMR. Although topologically similar to the recently determined x-ray structure of pilin from Vibrio cholerae toxin-coregulated pilus, the only Type IVb pilin with known structure, t-PilS contains many distinct structural features. The protein contains an extra pair of beta-strands in the N-terminal alphabeta loop that align with the major beta-strands to form a continuous 7-stranded antiparallel beta-sheet. The C-terminal disulfide-bonded region of t-PilS is only half the length of that of toxin-coregulated pilus pilin. A model of S. typhi pilus has been proposed and mutagenesis studies suggested that residues on both the alphabeta loop and the C-terminal disulfide-bonded region of PilS might be involved in binding specificity of the pilus. This model structure reveals an exposed surface between adjacent subunits of PilS that could be a potential binding site for the cystic fibrosis transmembrane conductance regulator.  相似文献   

14.
Vibrio cholerae O1 strains are classified into one of two biotypes, classical and E1 Tor, the latter being primarily responsible for cholera cases worldwide since 1961. Recent studies in our laboratory have focused upon the pathogenic and vaccine significance of the toxin-coregulated pili (TCP) produced by strains of E1 Tor biotype. Mutants in which the tcpA gene (encoding the pilin subunit protein) has been inactivated are dramatically attenuated in the infant mouse cholera model, showing markedly reduced colonisation potential in mixed-infection competition experiments. Significantly, in the vaccine context, antibodies to TCP are sufficient to prevent experimental infection, although our data suggest that this protective effect might be limited to strains of homologous biotype. Since we have shown that tcpA sequences are conserved within a biotype but differ between biotypes, this latter observation suggests that the biotype-restricted pilin epitopes might have greater vaccine significance. Similar studies indicate that TCP also play a critical role in colonisation by strains of the recently-recognised O139 serogroup, which is thought to have evolved from an O1 E1 Tor strain. In contrast to the effect of introducing mutations in the tcpA gene, strains carrying inactivated mshA genes (encoding the subunit of the mannose-sensitive haemagglutinin pilus) show unaltered in vivo behaviour. Consistent with this finding is our inability to demonstrate any protective effect associated with antibodies to MSHA. Ongoing approaches to vaccine development are variously aimed at improving the immunogenicity of the current inactivated whole-cell vaccine, or assessing the field efficacy of a promising live attenuated strain. The possible implications of our findings are discussed in relation to both of these options.  相似文献   

15.
Expression of multiple types of N-methyl Phe pili in Pseudomonas aeruginosa   总被引:5,自引:0,他引:5  
The nature of pili synthesized by Pseudomonas aeruginosa when plasmid-borne genes of homologous pilins from Bacteroides nodosus are introduced as thermoregulated expression systems has been ascertained. Expression of B. nodosus pili inhibited the production of indigenous P. aeruginosa pili, and an organism harbouring pilin genes from two strains of B. nodosus produced two serologically distinct populations of pili on each cell. Simultaneous production of both indigenous and foreign pili was achieved by partial induction of expression. Homogeneity in pilus structure suggests either that there is an exclusive specificity of interaction between identical pilin subunits in pilus assembly, or that each pilus is produced from the translation products of a single messenger RNA molecule, with translation and pilus assembly closely coupled.  相似文献   

16.
CS1 pili serve as the prototype for a large class of serologically distinct pili associated with enterotoxigenic Escherichia coli that cause diarrhoea in humans. The four genes essential for CS1 pilus morphogenesis, cooB, A, C and D, are arranged in an operon and encode structural and assembly proteins unlike those of other pilus systems commonly associated with Gram-negative bacteria. CS1 pili are composed primarily of the major pilin subunit, CooA, which determines the serological type of the pilus. The major pilin subunit is assembled into pili by the proteins CooB, CooC and CooD. CooD is both a minor component found at the pilus tip and an essential assembly protein, whereas CooC is an outer membrane protein thought to be involved in pilin transport. CooB is a novel periplasmic chaperone-like protein that forms intermolecular complexes with and stabilizes the major and minor pilins. Unlike other pilin chaperones, CooB also stabilizes the outer membrane component of the assembly system, CooC. The proteins of CS1 pili have no significant homology to those of the well-characterized Pap (pyelonephritis-associated) pili and related systems, although most of the features of pilus morphogenesis are similar. Therefore, these appear to be among the rare cases of convergent evolution. Thus, for CS1 pili, enterotoxigenic E. coli use new protein 'tools' in the old 'trade' of forming functional pili.  相似文献   

17.
Haemophilus influenzae type b (Hib) organisms produce pili, which mediate attachment to human cells and are multimeric structures composed of a 24-kDa subunit called pilin or HifA. Although pili from other organisms contain additional proteins accessory to pilin, no structural components other than pilin have been identified in Hib pili. Previous analysis of a Hib pilus gene cluster, however, suggested that two genes, hifD and hifE, may encode additional pilus subunits. To determine if hifD and hifE encode pilus components, the genes were overexpressed in Escherichia coli and the resulting proteins were purified and used to raise polyclonal antisera. Antisera raised against C-terminal HifD and HifE fragments reacted with H. influenzae HifD and HifE proteins, respectively, on Western immunoblots. Western immunoblot analysis of immunoprecipitated Hib pili demonstrated that HifD and HifE copurified with pili. In enzyme-linked immunosorbent assays, antisera raised against a recombinant HifE protein that contained most of the mature protein reacted more to piliated Hib than to nonpiliated Hib or to a mutant containing a hifE gene insertion. Immunoelectron microscopy confirmed that the HifE antiserum bound to pili and demonstrated that the antiserum bound predominantly to the pilus tips. These data indicate that HifD and HifE are pilus subunits. Adherence inhibition studies demonstrated that the HifE antiserum completely blocked pilus-mediated hemagglutination, suggesting that HifE mediates pilus adherence.  相似文献   

18.
The adherence of non-mucoid Pseudomonas aeruginosa strains is believed to be mediated by the pilus, which consists of a single protein subunit of 15,000 Daltons called pilin. Ten antipeptide antisera were raised to map the surface regions of pilin from P. aeruginosa strain K (PAK). Only one of the antipeptide antisera to the eight predicted surface regions failed to react with PAK pili in direct ELISA. Five out of eight synthetic peptides representing the eight predicted surface regions reacted with anti-PAK pilus antiserum, indicating their surface exposure. Combining the antipeptide and antipilus antisera results, all eight predicted surface regions were demonstrated to be surface-exposed. The PAK 128-144-OH peptide produced the best binding antiserum to PAK pili. Only antipeptide Fab fragments directed against the disulphide bridged C-terminal region of PAK pilin blocked the adherence of pili to human buccal epithelial cells, which suggests that this region contains the receptor-binding domain of the PAK pilus.  相似文献   

19.
Intragenic recombination between the single complete pilin gene (expression locus) and multiple, distinct, partial pilin gene copies (silent, storage loci) is thought to account for the generation of pilus antigenic diversity and piliation phase (on-off) changes exhibited by Neisseria gonorrhoeae. The mechanisms operating in the genomic rearrangements associated with these forms of pilus variation were investigated through the study of isogenic strains of gonococci bearing either wild-type or altered recA alleles. Examination of the rates of pilus phase variation and the genetic basis for changes in piliation status displayed by these strains show that recA mediated homologous recombination is required for these high frequency events and confirm that the nonpiliated state results from mutations in the expressed pilin gene. In a strain that is deficient in recA mediated homologous recombination, pilus phase variation occurs at a 100-1000-fold reduced rate and results predominantly from one class of spontaneous frameshift mutations within the pilin structural gene.  相似文献   

20.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号