首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

2.
Matsuo Y  Tanaka K  Matsuda H  Kawamukai M 《FEBS letters》2005,579(12):2737-2743
In Schizosaccharomyces pombe, a major role of chitin is to build up a complete spore. Here, we analyzed the cda1(+) gene (SPAC19G12.03), which encodes a protein homologous to chitin deacetylases, to know whether it is required for spore formation in S. pombe. The homothallic Deltacda1 strain constructed by homologous recombination was found to form a little amount of abnormal spores that contained one, two, or three asci, similar to (but not as strong as) the phenotype observed in a deletion mutant of chs1 encoding chitin synthase 1. This phenotype is reversed by expression of S. cerevisiae chitin deacetylase CDA1 or CDA2, suggesting that cda1 encodes a chitin deacetylase. To support the role of Cda1 in sporulation, the timing of expression of cda1(+) mRNA increased during sporulation process. We also found that the Cda1 protein self-associated when its binding was tested both by two-hybrid system and immunoprecipitation. Thus, these data indicated that cda1(+) is required for proper spore formation in S. pombe.  相似文献   

3.
In silico analysis of the genome sequence of the human pathogenic fungus Candida albicans identified an open reading frame encoding a putative fourth member of the chitin synthase gene family. This gene, named CaCHS8, encodes an 1105 amino acid open reading frame with the conserved motifs characteristic of class I zymogenic chitin synthases with closest sequence similarity to the non-essential C. albicans class I CHS2 gene. Although the CaCHS8 gene was expressed in both yeast and hyphal cells, homozygous chs8 Delta null mutants had normal growth rates, cellular morphologies and chitin contents. The null mutant strains had a 25% reduction in chitin synthase activity and were hypersensitive to Calcofluor White. A chs2 Delta chs8 Delta double mutant had less than 3% of normal chitin synthase activity and had increased wall glucan and decreased mannan but was unaffected in growth or cell morphology. The C. albicans class I double mutant did not exhibit a bud-lysis phenotype as found in the class I chs1 Delta mutant of Saccharomyces cerevisiae. Therefore, C. albicans has four chitin synthases with two non-essential class I Chs isoenzymes that contribute collectively to more than 97% of the in vitro chitin synthase activity.  相似文献   

4.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

5.
We have cloned chs1+, a Schizosaccharomyces pombe gene with similarity to class II chitin synthases, and have shown that it is responsible for chitin synthase activity present in cell extracts from this organism. Analysis of this activity reveals that it behaves like chitin synthases from other fungi, although with specific biochemical characteristics. Deletion or overexpression of this gene does not lead to any apparent defect during vegetative growth. In contrast, chs1+ expression increases significantly during sporulation, and this is accompanied by an increase in chitin synthase activity. In addition, spore formation is severely affected when both parental strains carry a chs1 deletion, as a result of a defect in the synthesis of the ascospore cell wall. Finally, we show that wild-type, but not chs1-/chs1-, ascospore cell walls bind wheatgerm agglutinin. Our results clearly suggest the existence of a relationship between chs1+, chitin synthesis and ascospore maturation in S. pombe.  相似文献   

6.
Two chitin synthases in Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
Disruption of the yeast CHS1 gene, which encodes trypsin-activable chitin synthase I, yielded strains that apparently lacked chitin synthase activity in vitro, yet contained normal levels of chitin (Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L., and Robbins, P. W. (1986) Cell 46, 213-225). It is shown here that disrupted (chs1 :: URA3) strains have a particulate chitin synthetic activity, chitin synthase II, and that wild type strains, in addition to chitin synthase I, have this second activity. Chitin synthase II is measured in wild type strains without preincubation with trypsin, the condition under which highest chitin synthase II activities are obtained in extracts from the chs1 :: URA3 strain. Chitin synthase II, like chitin synthase I, uses UDP-GlcNAc as substrate and synthesizes alkali-insoluble chitin (with a chain length of about 170 residues). The enzymes are equally sensitive to the competitive inhibitor Polyoxin D. The two chitin synthases are distinct in their pH and temperature optima, and in their responses to trypsin, digitonin, N-acetyl-D-glucosamine, and Co2+. In contrast to the report by Sburlati and Cabib (Sburlati, A., and Cabib, E. (1986) Fed. Proc. 45, 1909), chitin synthase II activity in vitro is usually lowered on treatment with trypsin, indicating that chitin synthase II is not activated by proteolysis. Chitin synthase II shows highest specific activities in extracts from logarithmically growing cultures, whereas chitin synthase I, whether from growing or stationary phase cultures, is only measurable after trypsin treatment, and levels of the zymogen do not change. Chitin synthase I is not required for alpha-mating pheromone-induced chitin synthesis in MATa cells, yet levels of chitin synthase I zymogen double in alpha factor-treated cultures. Specific chitin synthase II activities do not change in pheromone-treated cultures. It is proposed that of yeast's two chitin synthases, chitin synthase II is responsible for chitin synthesis in vivo, whereas nonessential chitin synthase I, detectable in vitro only after trypsin treatment, may not normally be active in vivo.  相似文献   

7.
8.
We found the presence of DNA sequence which shows sequence similarity to the class IV chitin synthase gene (CHS3) of Saccharomyces cerevisiae in the genome of 14 Rhizopus species which belong to zygomycetes. We cloned a gene (chs3), which might correspond to one of these homologous sequences, from Rhizopus oligosporus by low stringency plaque hybridization probed with CHS3. The deduced amino acid sequence of this gene showed highest similarity to the class IV chitin synthase of Neurospora crassa (46.7% identity over 1087 amino acids), showing that this gene encodes a class IV chitin synthase. Northern analysis revealed the differential expression pattern of this gene in the asexual life cycle with highest expression in the early stage of asexual spore formation. This is the first report of the isolation and analysis of a class IV chitin synthase gene from zygomycete fungi.  相似文献   

9.
10.
11.
Chitin, the beta 1,4-linked polymer of N-acetylglucosamine, is a fibrous polysaccharide that in many yeasts helps to maintain the structure of the mother-bud junction and in filamentous fungi is often the major supporting component of the cell wall. We have previously described a Candida albicans chitin synthase, CHS1. The DNA and derived protein sequences of a second gene, CHS2, are presented and compared with previously published gene sequences. Northern blot analysis shows that strikingly different levels of synthase 1 and 2 expression occur during yeast and hyphal phases of Candida growth.  相似文献   

12.
The CAL1 gene was cloned by complementation of the defect in Calcofluor-resistant calR1 mutants of Saccharomyces cerevisiae. Transformation of the mutants with a plasmid carrying the appropriate insert restored Calcofluor sensitivity, wild-type chitin levels and normal spore maturation. Southern blots using the DNA fragment as a probe showed hybridization to a single locus. Allelic tests indicated that the cloned gene corresponded to the calR1 locus. The DNA insert contains a single open-reading frame encoding a protein of 1,099 amino acids with a molecular mass of 124 kD. The predicted amino acid sequence shows several regions of homology with those of chitin synthases 1 and 2 from S. cerevisiae and chitin synthase 1 from Candida albicans. calR1 mutants have been found to be defective in chitin synthase 3, a trypsin-independent synthase. Transformation of the mutants with a plasmid carrying CAL1 restored chitin synthase 3 activity; however, overexpression of the enzyme was not achieved even with a high copy number plasmid. Since Calcofluor-resistance mutations different from calR1 also result in reduced levels of chitin synthase 3, it is postulated that the products of some of these CAL genes may be limiting for expression of the enzymatic activity. Disruption of the CAL1 gene was not lethal, indicating that chitin synthase 3 is not an essential enzyme for S. cerevisiae.  相似文献   

13.
14.
15.
Natural resistance of wheat against Fusarium head blight (FHB) is inadequate and new strategies for controlling the disease are required. Chitin synthases that catalyze chitin biosynthesis would be an ideal target for antifungal agents. In this study, a class I chitin synthase gene (CHS1) from Fusarium asiaticum, the predominant species of FHB pathogens on wheat in China, was functionally disrupted via Agrobacterium tumefaciens-mediated transformation. Specific disruption of the CHS1 gene resulted in a 58% reduction of chitin synthase activity, accompanied by decreases of 35% in chitin content, 22% in conidiation, and 16% in macroconidium length. The Δchs1 mutant strain had a growth rate comparable to that of the wild-type on PDA medium but had a 35% increase in the number of nuclear cellulae and exhibited a remarkably increased sensitivity to osmosis stresses. Electron microscopy revealed substantial changes occurring in cell wall structures of the macroconidium, ascospore, and mycelium, with the most profound changes in the mycelium. Furthermore, the Δchs1 mutant displayed significantly reduced pathogenicity on wheat spikes and seedlings. Re-introduction of a functional CHS1 gene into the Δchs1 mutant strain restored the wild-type phenotype. These results reveal an important in vivo role played by a CHS1 gene in a FHB pathogen whose mycelial chitin could serve as a target for controlling the disease.  相似文献   

16.
Previous studies (Aufauvre-Brown et al., 1997; Mellado et al., 1996a,b ) have shown that only two genes of the Aspergillus fumigatus chitin synthase family, chsG and chsE, play a role in the morphogenesis of this fungal species. An A. fumigatus strain lacking both chsG (class III CHS) and chsE (class V CHS) genes was constructed by gene replacement of the chsE gene with a copy that has its conserved coding region interrupted by the hph resistance cassette in an A. fumigatus chsG- genetic background. Unexpectedly the double disruption was not lethal. The double mutant AfchsG-/chsE- strain (i) has reduced chitin synthase activity with or without trypsin stimulation, (ii) has a reduced colony radial growth rate, (iii) produces highly branched hyphae, (iv) exhibits aberrant features, such as periodic swellings along the length of the hyphae and a block in conidiation that can be partially restored by an osmotic stabilizer (v) shows alterations in the shape and germination capacity of the conidia, and (vi) has a cell wall that contains half the chitin of the parental strain and is, unexpectedly, highly enriched in alpha-(1-3) glucan.  相似文献   

17.
To explore the function of chitin in Schizosaccharomyces pombe, we have cloned chs1+ and chs2+, encoding putative chitin synthases, based on sequences in the Sanger Centre database. The synthetic lethal phenotype of the S. cerevisiae chs1 chs2 chs3 mutant was complemented by expression of S. pombe chs1+ or chs1+, indicating that both chs1+ and chs2+ in fact encode chitin synthase. The homothallic Deltachs1 strain formed abnormal asci that contained 1, 2, or 3 spores, while the Deltachs2 strain had no noticeable phenotype. The chs1 chs2 double disruptant looked similar phenotypically to the Deltachs1 strain. The Chs2-GFP fusion protein predominantly localized at the septum after the septum was formed during vegetative growth. The level of chs2+ mRNA increased just before the septum was formed. Levels of Chs2-13Myc synthesis also changed during the cell cycle. Thus, chs1+ is required for proper spore formation, and chs2+ is perhaps involved in septum formation.  相似文献   

18.
Previously, we showed that chitin synthase 2 (Chs2) is required for septum formation in Saccharomyces cerevisiae, whereas chitin synthase 1 (Chs1) does not appear to be an essential enzyme. However, in strains carrying a disrupted CHS1 gene, frequent lysis of buds is observed. Lysis occurs after nuclear separation and appears to result from damage to the cell wall, as indicated by osmotic stabilization and by a approximately 50-nm orifice at the center of the birth scar. Lysis occurs at a low pH and is prevented by buffering the medium above pH 5. A likely candidate for the lytic system is a previously described chitinase that is probably involved in cell separation. The chitinase has a very acidic pH optimum and a location in the periplasmic space that exposes it to external pH. Accordingly, allosamidin, a specific chitinase inhibitor, substantially reduced the number of lysed cells. Because the presence of Chs1 in the cell abolishes lysis, it is concluded that damage to the cell wall is caused by excessive chitinase activity at acidic pH, which can normally be repaired through chitin synthesis by Chs1. The latter emerges as an auxiliary or emergency enzyme. Other experiments suggest that both Chs1 and Chs2 collaborate in the repair synthesis of chitin, whereas Chs1 cannot substitute for Chs2 in septum formation.  相似文献   

19.
Benjaminiella poitrasii is a zygomycetous, non-pathogenic dimorphic fungus. Chitin synthases are the membrane bound enzymes involved in the synthesis of chitin and are key enzymes in the cell wall metabolism. Multiplicity of these enzymes is a common occurrence. Here, we identify eight distinct CHS genes in B. poitrasii as confirmed through DNA sequence and Southern analysis. These genes are related to other fungal CHS genes. BpCHS1-4 are class I-III chitin synthases while BpCHS5-8 are class IV-V chitin synthases. These eight genes are differentially expressed during morphogenesis and under different growth conditions. Two of these genes viz. BpCHS2 and BpCHS3 appear to be specific to the mycelial growth form. These are the first B. poitrasii sequences to be reported. Based on CHS gene sequences, B. poitrasii chitin synthase genes place it with other zygomycetes on a fungal phylogenetic tree.  相似文献   

20.
The shape and integrity of fungal cells is dependent on the skeletal polysaccharides in their cell walls of which beta(1,3)-glucan and chitin are of principle importance. The human pathogenic fungus Candida albicans has four genes, CHS1, CHS2, CHS3 and CHS8, which encode chitin synthase isoenzymes with different biochemical properties and physiological functions. Analysis of the morphology of chitin in cell wall ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that comprised the bulk of the cell wall; and a network of longer interlaced microfibrils in the bud scars and primary septa. Analysis of chitin ghosts of chs mutant strains by shadow-cast transmission electron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-chitin rodlets were absent in chs3 mutants. The inferred site of chitin microfibril synthesis of these Chs enzymes was corroborated by their localization determined in Chsp-YFP-expressing strains. These results suggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rodlets at the same cellular location. Therefore the architecture of the chitin skeleton of C. albicans is shaped by the action of more than one chitin synthase at the site of cell wall synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号