首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

2.
Many enzymes acting on DNA require Mg2+ ions not only for catalysis but also to bind DNA. Binding studies often employ Ca2+ as a substitute for Mg2+, to promote DNA binding whilst disallowing catalysis. The SfiI endonuclease requires divalent metal ions to bind DNA but, in contrast to many systems where Ca2+ mimics Mg2+, Ca2+ causes SfiI to bind DNA almost irreversibly. Equilibrium binding by wild-type SfiI cannot be conducted with Mg2+ present as the DNA is cleaved so, to study the effect of Mg2+ on DNA binding, two catalytically-inactive mutants were constructed. The mutants bound DNA in the presence of either Ca2+ or Mg2+ but, unlike wild-type SfiI with Ca2+, the binding was reversible. With both mutants, dissociation was slow with Ca2+ but was in one case much faster with Mg2+. Hence, Ca2+ can affect DNA binding differently from Mg2+. Moreover, SfiI is an archetypal system for DNA looping; on DNA with two recognition sites, it binds to both sites and loops out the intervening DNA. While the dynamics of looping cannot be measured with wild-type SfiI and Ca2+, it becomes accessible with the mutant and Mg2+.  相似文献   

3.
Kinetic experimentation was used to characterize the Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles. In addition to its participation in the ATP·Mg complex as substrate for the ATPase, Mg2+ is an activator of phosphoenzyme progression to hydrolylic cleavage. It is shown that this activation is due to Mg2+ occupancy of an allosteric site easily accessible on the outer surface of the vesicles, rather than to participation in an antiport mechanism. The Mg2+ site is distinct from the Ca2+ binding sites which are involved in activation of enzyme phosphorylation by ATP, and Ca2+ translocation. The role of Mg2+ is quite specific, inasmuch as phosphoenzyme decay is much slower if the Mg2+ allosteric site is occupied by Ca2+. Conversely, competive occupancy of the Ca2+ sites by Mg2+ does not permit enzyme phosphorylation by ATP. Intermediate characteristics between Mg2+ and Ca2+ are displayed by Mn2+ which is well able to stimulate phosphoenzyme cleavage by occupancy of the Mg2+ allosteric site, and is also able (although at much slower rates) to activate enzyme phosphorylation, and undergo active transport by occupancy of the Ca2+ sites.  相似文献   

4.
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.  相似文献   

5.
We reported previously that a Ca2+-ATPase in rat testes and goat spermatozoa could be activated by Ca2+ alone without Mg2+, though it has a lot of similarities with the well known Ca2+, Mg2+-ATPase. Recently, we were successful in isolating the phosphorylated intermediate of the former enzyme under control conditions i.e., in the presence of low concentration of Ca2+ and at low temperature. Increase of the concentration of Ca2+ and/or temperature lead to dephosphorylation. Based on our observations, we proposed a reaction scheme comparable to that of Ca2+, Mg2+-ATPase. The findings strengthened our previous report that Mg2+-independent Ca2+-ATPase is involved in Ca2+ transport and Ca2+ uptake like Ca2+, Mg2+-ATPase.  相似文献   

6.
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. Interestingly, the Mg2+-binding affinity is clearly higher than in S-CaBP1, suggesting that the extended N-terminus might influence Mg2+-binding of the first EF-hand. Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.  相似文献   

7.
Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca2+ dependent manner. Several studies already demonstrate that Mg2+ ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca2+ versus Mg2+ on AnxA5 binding to membrane models. In the presence of Ca2+, AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca2+ ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg2+, instead of Ca2+, no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca2+ ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg2+ ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg2+ ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.  相似文献   

8.
Synaptosomes isolated from sheep brain cortex accumulate Ca2+, Sr2+ and Mg2+ when incubated in isosmotic sucrose media containing 5 mM of either of these cations. The maximal levels of cations retained per mg of protein are 100 nmol of Ca2+, 85 nmol of Mg2+ and 80 nmol of Sr2+. The loss of Ca2+ or Sr2+ from the preloaded synaptosomes is increased by monovalent cations in the following order: Na+> K+ > Li+> choline, whereas for the loss of Mg2+ this order is different: K+ > Na+ > Li ~ choline. The efflux of Ca2+ or Sr2+ induced by monovalent cations decreases as the temperature is lowered and it is nearly abolished at 0°C, whereas the efflux of Mg2+ is much less influenced by temperature. The results suggest that the mechanism of exchange of Ca2+ for Na+ in synaptosomes operates similarly for Sr2+, but not for Mg2+.  相似文献   

9.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

10.
The activity of phosphodiesterase (“Ca2+ plus Mg2+-dependent” phosphodiesterase) of a preparation from brain was found to depend on the presence of both Ca2+ and a protein factor called modulator. It was shown by gel filtration that the active enzyme-modulator complex (MW, about 200,000) was formed from the modulator (MW, 28,000) and an inactive enzyme (MW, about 150,000) in the presence of Ca2+. When EGTA was added, this active enzyme-modulator complex dissociated into inactive enzyme and modulator. These results, together with the finding of Teo and Wang that Ca2+ binds to the modulator, could explain the stimulatory effect of Ca2+ on this enzyme as follows: The “Ca2+ plus Mg2+-dependent” phosphodiesterase may exist as the inactive free form in equilibrium with the active enzymemodulator (Ca2+) complex, and Ca2+, through binding to the modulator, may shift the equilibrium towards formation of the active enzyme-modulator (Ca2+) complex, thereby increasing the activity of the mixture. On decreasing the concentration of Ca2+, the process is reversible.  相似文献   

11.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

12.
Plots relating the initial rate of mitochondrial Ca2+ transport to the Ca2+ concentration (kinetic plots) have a hyperbolic shape in a Ca2+ concentration range of 2.5–100 µM as measured in sucrose or KCl media. In the presence of Mg2+ or a polyamine spermine, which both are competitive inhibitors of Ca2+ binding to low affinity sites at the membrane surface, the shape of the plots becomes sigmoidal. At higher concentrations of these agents linear kinetic plots are obtained as measured in a sucrose medium. In a KCl medium the sigmoidality of the kinetic plots is enhanced by an increase in the Mg2+ or spermine concentration. It is suggested that Mg2+ and spermine affect the kinetics of Ca2+ transport by interfering with Ca2+ binding to low affinity sites of the membrane surface and that the binding of Ca2+ to these sites is the first step of the mitochondrial Ca2+ transport.  相似文献   

13.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

14.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

15.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

16.
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

18.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

19.
Ca2+ and Mg2+ content of cellulose fibres is of relevance for a wide range of applications e.g. textile processing, pulp/paper, food. Sorption of Ca2+ and Mg2+ ions were found on lyocell type regenerated cellulose fibres. Higher affinity was found for Ca2+ ions compared to Mg2+ ions. At pH 9, fibre saturation was observed at a calcium binding capacity of 18–20 mmol/kg. A carboxylic group content of 18 mmol COOH per kg fibre material was determined based on the Methylene Blue absorption. This indicates a 1:1 molar stoichiometry between the carboxylic groups present in the fibres and the bound Ca2+ ions. Thus it is proposed that the salt in fibre shows the general composition (Cell-O? Ca2+ X?), X? being an anion bound in the salt to achieve charge neutrality.The sorption of Ca2+ also can be demonstrated by complex formation with 1,2-dihydroxy-9,10-anthraquinone (alizarin) which forms a red-violet Ca2+-complex. Colour fixation thus can be used as an indicator for the Ca2+-ions bound in the fibre.  相似文献   

20.
The effect of calcium and a soluble cytoplasmic activator on (Ca2+ + Mg2+)-ATPase of density-separated human red cells was investigated. At all calcium concentrations tested, dense (old) lysed cells and their isolated membranes displayed lower activities as compared to the light (young) cells and their membranes. Isolated membranes from all density red cell fractions showed two distinct (Ca2+ + Mg2+)-ATPase activities; one at low calcium and another at moderate calcium concentrations. At high calcium concentration, (Ca2+ + Mg2+)-ATPase activity of isolated membranes was low in all cell fractions. In contrast to the isolated membranes, lysed cells from all density fractions had a maximum (Ca2+ + Mg2+)-ATPase activity only at a low concentration of calcium, while moderate and high calcium concentrations produced low activity. Upon isolation of membranes, a substantial loss of (Ca2+ + Mg2+)-ATPase activity took place from all density cell fractions. Upon membrane isolation, the relative loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration was greater in older cells. The extent of stimulation of (Ca2+ + Mg2+)-ATPase by the activator at low calcium concentration was 3–4-fold greater in older cell membranes than in the young ones.These data suggest that the lower (Ca2+ + Mg2+)-ATPase activity in old cells could be accounted for by a selective loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration presumably due to reduced affinity of old cell membranes to activator protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号