首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Cytoskeleton of apicomplexan parasites.   总被引:7,自引:0,他引:7  
The Apicomplexa are a phylum of diverse obligate intracellular parasites including Plasmodium spp., the cause of malaria; Toxoplasma gondii and Cryptosporidium parvum, opportunistic pathogens of immunocompromised individuals; and Eimeria spp. and Theileria spp., parasites of considerable agricultural importance. These protozoan parasites share distinctive morphological features, cytoskeletal organization, and modes of replication, motility, and invasion. This review summarizes our current understanding of the cytoskeletal elements, the properties of cytoskeletal proteins, and the role of the cytoskeleton in polarity, motility, invasion, and replication. We discuss the unusual properties of actin and myosin in the Apicomplexa, the highly stereotyped microtubule populations in apicomplexans, and a network of recently discovered novel intermediate filament-like elements in these parasites.  相似文献   

2.
Sporozoan parasites of the phylum Apicomplexa all possess common apical structures. The current study used a monoclonal antibody (mAb-E12) to identify a conserved antigen in the apical region of merozoites of seven species of Plasmodium (including rodent, primate and human pathogens), tachyzoites of Toxoplasma gondii, bradyzoites of Sarcocystis bovis, and sporozoites and merozoites of Eimeria tenella and E. acervulina. The antigen was also present in sporozoites of haemosporinid parasites. Immunofluorescence studies showed that the antigen was restricted to the apical 3rd of these invasive stages. Using immunoelectron microscopy, labeling was demonstrated in the region of the polar ring, below the paired inner membranes of the parasite pellicle, and near the subpellicular microtubules radiating from the polar ring of merozoites and sporozoites of E. tenella. The majority of the antigen could be extracted with 1% Triton-X 100, but a portion remained associated with the cytoskeletal elements. The molecule has a relative rate of migration (Mr) of 47,000 in Plasmodium spp. and 43-46,000 in coccidian species. Since the epitope recognized by mAb-E12 is highly conserved, restricted to motile stages, and appears to be associated with microtubules, this antigen could be involved in cellular motility and cellular invasion.  相似文献   

3.
ABSTRACT. Sporozoan parasites of the phylum Apicomplexa all possess common apical structures. The current study used a monoclonal antibody (mAb-E12) to identify a conserved antigen in the apical region of merozoites of seven species of Plasmodium (including rodent, primate and human pathogens), tachyzoites of Toxoplasma gondii , bradyzoites of Sarcocystis bovis , and sporozoites and merozoites of Eimeria tenella and E. acervulina. The antigen was also present in sporozoites of haemosporinid parasites. Immunofluorescence studies showed that the antigen was restricted to the apical 3rd of these invasive stages. Using immunoelectron microscopy, labeling was demonstrated in the region of the polar ring, below the paired inner membranes of the parasite pellicle, and near the subpellicular microtubules radiating from the polar ring of merozoites and sporozoites of E. tenella . The majority of the antigen could be extracted with 1% Triton-X 100, but a portion remained associated with the cytoskeletal elements. The molecule has a relative rate of migration (Mr) of 47,000 in Plasmodium spp. and 43–46,000 in coccidian species. Since the epitope recognized by mAb-El 2 is highly conserved, restricted to motile stages, and appears to be associated with microtubules, this antigen could be involved in cellular motility and cellular invasion.  相似文献   

4.
Heaslip AT  Nishi M  Stein B  Hu K 《PLoS pathogens》2011,7(9):e1002201
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.  相似文献   

5.
The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.  相似文献   

6.
Apicomplexa possess a complex pellicle that is composed of a plasma membrane and a closely apposed inner membrane complex (IMC) that serves as a support for the actin‐myosin motor required for motility and host cell invasion. The IMC consists of longitudinal plates of flattened vesicles, fused together and lined on the cytoplasmic side by a subpellicular network of intermediate filament‐like proteins. The spatial organization of the IMC has been well described by electron microscopy, but its composition and molecular organization is largely unknown. Here, we identify a novel protein of the IMC cytoskeletal network in Toxoplasma gondii, called TgSIP, and conserved among apicomplexan parasites. To finely pinpoint the localization of TgSIP, we used structured illumination super‐resolution microscopy and revealed that it likely decorates the transverse sutures of the plates and the basal end of the IMC. This suggests that TgSIP might contribute to the organization or physical connection among the different components of the IMC. We generated a T.gondii SIP deletion mutant and showed that parasites lacking TgSIP are significantly shorter than wild‐type parasites and show defects in gliding motility, invasion and reduced infectivity in mice.  相似文献   

7.
Members of the phylum Apicomplexa are motile and rapidly dividing intracellular parasites, able to occupy a large spectrum of niches by infecting diverse hosts and invading various cell types. As obligate intracellular parasites, most apicomplexans only survive for a short period extracellularly, and, during this time, have a high energy demand to power gliding motility and invasion into new host cells. Similarly, these fast‐replicating intracellular parasites are critically dependent on host‐cell nutrients as energy and carbon sources, noticeably for the extensive membrane biogenesis imposed during growth and division. To access host‐cell metabolites, the apicomplexans Toxoplasma gondii and Plasmodium falciparum have evolved strategies that exquisitely reflect adaptation to their respective niches. In the present review, we summarize and compare some recent findings regarding the energetic metabolism and carbon sources used by these two genetically tractable apicomplexans during host‐cell invasion and intracellular growth and replication.  相似文献   

8.
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion.  相似文献   

9.
Apicomplexa constitute one of the largest phyla of protozoa. Most Apicomplexa, including those pathogenic to humans, are obligate intracellular parasites. Their extracellular forms, which are highly polarized and elongated cells, share two unique abilities: they glide on solid substrates without changing their shape and reach an intracellular compartment without active participation from the host cell. There is now ample ultrastructural evidence that these processes result from the backward movement of extracellular interactions along the anteroposterior axis of the parasite. Recent work in several Apicomplexa, including genetic studies in the Plasmodium sporozoite, has provided molecular support for this 'capping' model. It appears that the same machinery drives both gliding motility and host cell invasion. The cytoplasmic motor, a transmembrane bridge and surface ligands essential for cell invasion are conserved among the main apicomplexan pathogens.  相似文献   

10.
Apicomplexan parasites express various calcium‐dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock‐down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7‐depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium‐dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.  相似文献   

11.
Motion is an intrinsic property of all living organisms, and each cell displays a variety of shapes and modes of locomotion. How structural proteins support cellular movement and how cytoskeletal dynamics and motor proteins are harnessed to generate order and movement are among the fundamental and not fully resolved questions in biology today. Protozoan parasites belonging to the Apicomplexa are of enormous medical and veterinary significance, being responsible for a wide variety of diseases in human and animals, including malaria, toxoplasmosis, coccidiosis and cryptosporidiosis. These obligate intracellular parasites exhibit a unique form of actin-based gliding motility, which is essential for host cell invasion and spreading of parasites throughout the infected hosts. A motor complex composed of a small myosin of class XIV associated with a myosin light chain and a plasma membrane-docking protein is present beneath the parasite's plasma membrane. According to the capping model, this complex is connected directly or indirectly to transmembrane adhesin complexes, which are delivered to the parasite surface upon microneme secretion. Together with F-actin and as yet unknown bridging molecules and proteases, these complexes are among the structural and functional components of the 'glideosome'.  相似文献   

12.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

13.
The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.  相似文献   

14.
15.
Suicide prevention: disruption of apoptotic pathways by protozoan parasites   总被引:4,自引:0,他引:4  
The modulation of apoptosis has emerged as an important weapon in the pathogenic arsenal of multiple intracellular protozoan parasites. Cryptosporidium parvum, Leishmania spp., Trypanosoma cruzi, Theileria spp., Toxoplasma gondii and Plasmodium spp. have all been shown to inhibit the apoptotic response of their host cell. While the pathogen mediators responsible for this modulation are unknown, the parasites are interacting with multiple apoptotic regulatory systems to render their host cell refractory to apoptosis during critical phases of intracellular infection, including parasite invasion, establishment and replication. Additionally, emerging evidence suggests that the parasite life cycle stage impacts the modulation of apoptosis and possibly parasite differentiation. Dissection of the host-pathogen interactions involved in modulating apoptosis reveals a dynamic and complex interaction that recent studies are beginning to unravel.  相似文献   

16.
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration. Here, we report the high-resolution solution structure of a complex between two crucial MICs, TgMIC6 and TgMIC1. Furthermore, we identify two analogous interaction sites within separate epidermal growth factor-like (EGF) domains of TgMIC6-EGF2 and EGF3-and confirm that both interactions are functional for the recognition of host cell receptor in the parasite, using immunofluorescence and invasion assays. The nature of this new mode of recognition of the EGF domain and its abundance in apicomplexan surface proteins suggest a more generalized means of constructing functional assemblies by using EGF domains with highly specific receptor-binding properties.  相似文献   

17.
Host-cell invasion by apicomplexan parasites is extremely rapid and relies on a sequence of events that are tightly controlled in time and space. In most Apicomplexa, the gliding motility and host-cell invasion are tightly coupled to the release of microneme proteins at the apical tip of the parasites and their redistribution toward the posterior pole. This movement is dependent on an intact parasite actomyosin system. Micronemes are involved in the trafficking and storage of ligands (MICs) for host-cell receptors that are not only structurally related but also functionally conserved among the Apicomplexa. In Toxoplasma gondii, the repertoire of membrane-spanning microneme proteins includes adhesins such as TgMIC2 and escorters such as TgMIC6. The latter forms a complex with the soluble adhesins, TgMIC1 and TgMIC4 and assures their proper sorting to the mironemes. Escorters are also anticipated to bridge host-cell receptors to the parasite membrane during invasion. Most TgMICs are proteolytically cleaved either during their transport along the secretory pathway and/or after exocytosis. The biological significance of these processing events is largely unknown. One of these processing events targets a conserved motif close to the membrane-spanning domain causing the release of the processed form of the micronemes from the parasite surface. The cleavages occurring after release might contribute to the disassembly of the complexes and thus to fission between the parasitophorous vacuole and the host plasma membrane at the end of the invasion process. Gliding motility and host-cell penetration involve the redistribution of the micronemes toward the posterior pole of the parasites. This capping process involves actin polymerisation, myosin adenosine triphosphatase activation and the establishment of a connection between the MICs-receptor complexes and the actomyosin system of the parasite. The most carboxy-terminal end of the MICs cytoplasmic tails is implicated in this process, but the precise nature of the connection with the actomyosin system remains to be elucidated.  相似文献   

18.
The inner membrane complex (IMC) of apicomplexan parasites is a specialised structure localised beneath the parasite’s plasma membrane, and is important for parasite stability and intracellular replication. Furthermore, it serves as an anchor for the myosin A motor complex, termed the glideosome. While the role of this protein complex in parasite motility and host cell invasion has been well described, additional roles during the asexual life cycle are unknown. Here, we demonstrate that core elements of the glideosome, the gliding associated proteins GAP40 and GAP50 as well as members of the GAPM family, have critical roles in the biogenesis of the IMC during intracellular replication. Deletion or disruption of these genes resulted in the rapid collapse of developing parasites after initiation of the cell cycle and led to redistribution of other glideosome components.  相似文献   

19.
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection. Ca2+-mediated signaling events modulate key steps required for host cell egress, invasion and motility, including secretion of microneme organelles and activation of the force-generating actomyosin-based motor. Here we show that a plant-like Calcium-Dependent Protein Kinase (CDPK) in T. gondii, TgCDPK3, which localizes to the inner side of the plasma membrane, is not essential to the parasite but is required for optimal in vitro growth. We demonstrate that TgCDPK3, the orthologue of Plasmodium PfCDPK1, regulates Ca2+ ionophore- and DTT-induced host cell egress, but not motility or invasion. Furthermore, we show that targeting to the inner side of the plasma membrane by dual acylation is required for its activity. Interestingly, TgCDPK3 regulates microneme secretion when parasites are intracellular but not extracellular. Indeed, the requirement for TgCDPK3 is most likely determined by the high K+ concentration of the host cell. Our results therefore suggest that TgCDPK3''s role differs from that previously hypothesized, and rather support a model where this kinase plays a role in rapidly responding to Ca2+ signaling in specific ionic environments to upregulate multiple processes required for gliding motility.  相似文献   

20.
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Micronemal proteins (MICs) are released onto the parasite surface just before invasion of host cells and play important roles in host cell recognition, attachment and penetration. Here, we report the atomic structure for a key MIC, TgMIC1, and reveal a novel cell-binding motif called the microneme adhesive repeat (MAR). Using glycoarray analyses, we identified a novel interaction with sialylated oligosaccharides that resolves several prevailing misconceptions concerning TgMIC1. Structural studies of various complexes between TgMIC1 and sialylated oligosaccharides provide high-resolution insights into the recognition of sialylated oligosaccharides by a parasite surface protein. We observe that MAR domains exist in tandem repeats, which provide a highly specialized structure for glycan discrimination. Our work uncovers new features of parasite-receptor interactions at the early stages of host cell invasion, which will assist the design of new therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号