首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A thymidylate synthase (TS)-ribonucleoprotein (RNP) complex composed of TS protein and the mRNA of the tumor suppressor gene p53 was isolated from cultured human colon cancer cells. RNA gel shift assays confirmed a specific interaction between TS protein and the protein-coding region of p53 mRNA, and in vitro translation studies demonstrated that this interaction resulted in the specific repression of p53 mRNA translation. To demonstrate the potential biological role of the TS protein-p53 mRNA interaction, Western immunoblot analysis revealed nearly undetectable levels of p53 protein in TS-overexpressing human colon cancer H630-R10 and rat hepatoma H35(F/F) cell lines compared to the levels in their respective parent H630 and H35 cell lines. Polysome analysis revealed that the p53 mRNA was associated with higher-molecular-weight polysomes in H35 cells compared to H35(F/F) cells. While the level of p53 mRNA expression was identical in parent and TS-overexpressing cell lines, the level of p53 RNA bound to TS in the form of RNP complexes was significantly higher in TS-overexpressing cells. The effect of TS on p53 expression was also investigated with human colon cancer RKO cells by use of a tetracycline-inducible system. Treatment of RKO cells with a tetracycline derivative, doxycycline, resulted in 15-fold-induced expression of TS protein and nearly complete suppression of p53 protein expression. However, p53 mRNA levels were identical in transfected RKO cells in the absence and presence of doxycycline. Taken together, these findings suggest that TS regulates the expression of p53 at the translational level. This study identifies a novel pathway for regulating p53 gene expression and expands current understanding of the potential role of TS as a regulator of cellular gene expression.  相似文献   

3.
4.
Levels of p27Kip1, a key negative regulator of the cell cycle, are often decreased in cancer. In most cancers, levels of p27Kip1 mRNA are unchanged and increased proteolysis of the p27Kip1 protein is thought to be the primary mechanism for its down-regulation. Here we show that p27Kip1 protein levels are also down-regulated by microRNAs in cancer cells. We used RNA interference to reduce Dicer levels in human glioblastoma cell lines and found that this caused an increase in p27Kip1 levels and a decrease in cell proliferation. When the coding sequence for the 3'UTR of the p27Kip1 mRNA was inserted downstream of a luciferase reporter gene, Dicer depletion also enhanced expression of the reporter gene product. The microRNA target site software TargetScan predicts that the 3'UTR of p27Kip1 mRNA contains multiple sites for microRNAs. These include two sites for microRNA 221 and 222, which have been shown to be upregulated in glioblastoma relative to adjacent normal brain tissue. The genes for microRNA 221 and microRNA 222 occupy adjacent sites on the X chromosome; their expression appears to be coregulated and they also appear to have the same target specificity. Antagonism of either microRNA 221 or 222 in glioblastoma cells also caused an increase in p27Kip1 levels and enhanced expression of the luciferase reporter gene fused to the p27Kip1 3'UTR. These data show that p27Kip1 is a direct target for microRNAs 221 and 222, and suggest a role for these microRNAs in promoting the aggressive growth of human glioblastoma.  相似文献   

5.
6.
目的:研究miR-9在卵巢癌细胞上皮间质转化(EMT)中的作用。方法:上调或者下调miR-9后,在RNA水平上通过RT-qPCR检测卵巢癌细胞系SKOV3和A2780中上皮指标E-cadherin表达变化;在蛋白水平,通过western blotting方法检测2株细胞系中上皮指标E-cadherin和间质指标vimentin蛋白表达变化。生物信息学预测可能靶向E-cadherin 3'UTR的miR NA,双荧光素酶报告系统进一步验证miR-9靶向结合E-cadherin的3'UTR区。结果:上调miR-9后,卵巢癌细胞系中E-cadherin表达受到明显抑制,vimentin表达明显增加;反之,下调miR-9后,E-cadherin表达明显增高,vimentin表达明显降低。通过生物信息学预测发现miR-9可以直接靶向E-cadherin的3'UTR区,荧光素酶报告系统验证预测结果正确。结论:miR-9促进卵巢癌细胞上皮间质转化。  相似文献   

7.
8.
We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP), which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1) whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE) RNA stem loop in the 5′ untranslated region (UTR) of APP mRNA. These agents were 10-fold less inhibitory of 5′UTR sequences of the related prion protein (PrP) mRNA. Western blotting confirmed that the ‘ninth’ small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009), a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5′UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer''s disease (AD). RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5′UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5′UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down syndrome (DS) that can also cause familial Alzheimer''s disease.  相似文献   

9.
10.
11.
12.
13.
Mendrysa SM  McElwee MK  Perry ME 《Gene》2001,264(1):139-146
The murine double minute 2 (mdm2) gene is essential for embryogenesis in mice that express the p53 tumor suppressor protein. Mdm2 levels must be regulated tightly because overexpression of mdm2 contributes to tumorigenesis. We investigated whether the 5' and 3' untranslated regions (UTRs) of murine mdm2 affect the expression of MDM2 proteins. Induction of mdm2 expression by p53 results in synthesis of an mdm2 mRNA with a short 5' UTR. The long 5' UTR increases internal initiation of translation of a minor MDM2 protein, p76(MDM2), without affecting the efficiency of translation of the full-length p90(MDM2). We discovered two alternative 3' untranslated regions in murine mdm2 mRNA expressed in the testis. The longer 3' UTR contains a consensus instability element, but mdm2 mRNAs containing the long and short 3' UTRs have comparable half-lives. The 3' UTRs do not affect either initiation codon use or translation efficiency. Thus, the murine 5' UTR, but not the 3'UTR, influences the ratio of the two MDM2 proteins but neither UTR affects MDM2 abundance significantly.  相似文献   

14.
15.
16.
17.
ATP-synthase assembly requires coordinated control of ATP mRNA translation; this may e.g. occur through the formation of mRNA–protein complexes. In this study we aim to identify sequences in the 3'UTR of the β-subunit F1-ATPase mRNA necessary for RNA–protein complex formation. We examined the interaction between a brain cytoplasmic protein extract and in vitro-synthesized β-subunit 3'UTR probes containing successive accumulative 5'- and 3'-deletions, as well as single subregion deletions, with or without poly(A) tail. Using electrophoretic mobility shift assays we found that two major RNA–protein complexes (here called RPC1 and RPC2) were formed with the full-length 3'UTR. The RPC2 complex formation was fully dependent on the presence of both the poly(A) tail and one subregion directly adjacent to it. For RPC1 complex formation, a 3'UTR sequence stretch (experimentally divided into three subregions) adjacent to but not including the poly(A) tail was necessary. This sequence stretch includes a conserved 40-nucleotide region that, according to the structure prediction program mfold, is able to fold into a characteristic stem–loop structure. Since the formation of the RPC1 complex was not dependent on a conventional sequence motif in the 3'UTR of the β-subunit mRNA but rather on the presence of the predicted stem–loop-forming region as such, we hypothetize that this RNA region, by forming a stem–loop in the 3'UTR β-subunit mRNA, is necessary for formation of the RNA–protein complex.  相似文献   

18.
Heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP) 1 was implicated in cap-independent translation by binding to the internal ribosome entry site in the 5′ untranslated region (UTR) of NF-κB-repressing factor (NRF). Two different NRF mRNAs have been identified so far, both sharing the common 5′ internal ribosome entry site but having different length of 3′ UTRs. Here, we used a series of DNA and RNA luciferase reporter constructs comprising 5′, 3′ or both NRF UTRs to study the effect of JKTBP1 on translation of NRF mRNA variants. The results indicate that JKTBP1 regulates the level of NRF protein expression by binding to both NRF 5′ and 3′ UTRs. Using successive deletion and point mutations as well as RNA binding studies, we define two distinct JKTBP1 binding elements in NRF 5′ and 3′ UTRs. Furthermore, JKTBP1 requires two distinct RNA binding domains to interact with NRF UTRs and a short C-terminal region for its effect on NRF expression. Together, our study shows that JKTBP1 contributes to NRF protein expression via two disparate mechanisms: mRNA stabilization and cap-independent translation. By binding to 5′ UTR, JKTBP1 increases the internal translation initiation in both NRF mRNA variants, whereas its binding to 3′ UTR elevated primarily the stability of the major NRF mRNA. Thus, JKTBP1 is a key regulatory factor linking two pivotal control mechanisms of NRF gene expression: the cap-independent translation initiation and mRNA stabilization.  相似文献   

19.
20.
Takagi M  Absalon MJ  McLure KG  Kastan MB 《Cell》2005,123(1):49-63
Increases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of p53 protein. Here we demonstrate that increased translation of p53 mRNA is also a critical step in the induction of p53 protein in irradiated cells. Ribosomal protein L26 (RPL26) and nucleolin were found to bind to the 5' untranslated region (UTR) of p53 mRNA and to control p53 translation and induction after DNA damage. RPL26 preferentially binds to the 5'UTR after DNA damage, and its overexpression enhances association of p53 mRNA with heavier polysomes, increases the rate of p53 translation, induces G1 cell-cycle arrest, and augments irradiation-induced apoptosis. Opposite effects were seen when RPL26 expression was inhibited. In contrast, nucleolin overexpression suppresses p53 translation and induction after DNA damage, whereas nucleolin downregulation promotes p53 expression. These findings demonstrate the importance of increased translation of p53 in DNA-damage responses and suggest critical roles for RPL26 and nucleolin in affecting p53 induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号