首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

2.
1. Mitochondria, inner and outer mitochondrial membranes and microsomes were isolated and purified from pig heart. Their lipid composition and protein components were studied. 2. The fatty acid distribution in the main phospholipids seemed specific rather of a given phospholipid and not of one type of membrane. 3. Inner mitochondrial membranes were characterized by a high content in cardiolipin and a very low level of triglycerides together with a high degree of unsaturation and C18 acids. Gel electrophoresis revealed 13 different polypeptide subunits of which 5 were major ranging in molecular weights from 10000 to 215000. 4. In outer mitochondrial membranes, total lipid, phosphatidylcholine, phosphatidylinositol, plasmologen and triglyceride contents were much higher than in inner membranes. Fatty acids of phospholipids were mostly saturated and the polypeptide pattern showed 12 components, of which 4 were major of mol. wt 75000, 60000, 20000 and below 10000. 5. Compared to outer membrane, microsomes exhibited a much higher cholesterol content and markedly different protein profiles. They contained significant amounts of cardiolipin and phosphatidylserine, this latter phospholipid being exclusively located in microsomes. However odd similarities were observed in some lipid components of microsomes and inner mitochondrial membranes, but fatty acids were more saturated in microsomes and electrophoretic profiles of protein components appeared very different and revealed components of high mol. wt.  相似文献   

3.
Cook TA  Ghomashchi F  Gelb MH  Florio SK  Beavo JA 《Biochemistry》2000,39(44):13516-13523
PDE6 (type 6 phosphodiesterase) from rod outer segments consists of two types of catalytic subunits, alpha and beta; two inhibitory gamma subunits; and one or more delta subunits found only on the soluble form of the enzyme. About 70% of the phosphodiesterase activity found in rod outer segments is membrane-bound, and is thought to be anchored to the membrane through C-terminal prenyl groups. The recombinant delta subunit has been shown to solubilize the membrane-bound form of the enzyme. This paper describes the site and mechanism of this interaction in more detail. In isolated rod outer segments, the delta subunit was found exclusively in the soluble fraction, and about 30% of it did not coimmunoprecipitate with the catalytic subunits. The delta subunit that was bound to the catalytic subunits dissociated slowly, with a half-life of about 3.5 h. To determine whether the site of this strong binding was the C-termini of the phosphodiesterase catalytic subunits, peptides corresponding to the C-terminal ends of the alpha and beta subunits were synthesized. Micromolar concentrations of these peptides blocked the phosphodiesterase/delta subunit interaction. Interestingly, this blockade only occurred if the peptides were both prenylated and methylated. These results suggested that a major site of interaction of the delta subunit is the methylated, prenylated C-terminus of the phosphodiesterase catalytic subunits. To determine whether the catalytic subunits of the full-length enzyme are methylated in situ when bound to the delta subunit, we labeled rod outer segments with a tritiated methyl donor. Soluble phosphodiesterase from these rod outer segments was more highly methylated (4.5 +/- 0.3-fold) than the membrane-bound phosphodiesterase, suggesting that the delta subunit bound preferentially to the methylated enzyme in the outer segment. Together these results suggest that the delta subunit/phosphodiesterase catalytic subunit interaction may be regulated by the C-terminal methylation of the catalytic subunits.  相似文献   

4.
The enterotoxin from Vibrio cholerae is a protein of 100,000 mol wt which stimulates adenylate cyclase activity ubiquitously. The binding of biologically active 125I-labeled choleragen to cell membranes is of extraordinary affinity and specificity. The binding may be restricted to membrane-bound ganglioside GMI. This ganglioside can be inserted into membranes from exogenous sources, and the increased toxin binding in such cells can be reflected by an increased sensitivity to the biological effects of the toxin. Features of the toxin-activated adenylate cyclase, including conversion of the enzyme to a GTP-sensitive state, and the increased sensitivity of activation by hormones, suggest analogies between the basic mechanism of action of choleragen and the events following binding of hormones to their receptors. The action of the toxin is probably not mediated through intermediary cytoplasmic events, suggesting that its effects are entirely due to processes involving the plasma membrane. The kinetics of activation of adenylate cyclase in erythrocytes from various species as well as in rat adipocytes suggest a direct interaction between toxin and the cyclase enzyme which is difficult to reconcile with catalytic mechanisms of adenylate cyclase activation. Direct evidence for this can be obtained from the comigration of toxin radioactivity with adenylate cyclase activity when toxin-activated membranes are dissolved in detergents and chromatographed on gel filtration columns. Agarose derivatives containing the “active” subunit of the toxin can specifically adsorb adenylate cyclase activity, and specific antibodies against the choleragen can be used for selective immunoprecipitation of adenylate cyclase activity from detergentsolubilized preparations of activated membranes. It is proposed that toxin action involves the initial formation of an inactive toxin-ganglioside complex which subsequently migrates and is somehow transformed into an active species which involves relocation within the two-dimensional structure of the membrane with direct pertubation of adenylate cyclase molecules (virtually irreversibly). These studies suggest new insights into the normal mechanisms by which hormone receptors modify membrane functions.  相似文献   

5.
The structural properties of isolated purified rat brain synaptosomal membranes, both in the presence and absence of purified active toxin of the Mojave snake Crotalus scutulatus scutulatus, were studied by spin-label electron spin resonance techniques. The spectra from eight different positional isomers of nitroxide-labelled stearic acids, a rigid steroid androstanol, and a spin-labelled phosphatidylcholine intercalated into the synaptosomal membranes, were obtained as a function of temperature from 4-40 degrees C. The flexibility gradient (from spin-label order parameters) and polarity profile (from isotropic splitting factors) across the synaptosomal membranes, was characteristic for lipid bilayers. The nitroxide spin-labelled steroid, androstanol, intercalated into the synaptosomal membrane, revealed the abrupt onset of rapid cooperative rotation about the long axis of the molecule at 12 degrees C showing that the lipid molecules are rotating rapidly around their long axes at physiological temperatures. The presence of the Mojave toxin affected the synaptosomal membrane in a complex manner, depending upon the temperature and the position of the nitroxide label on the alkyl chain of the stearic acid probe. Mojave toxin exerted little effect on the flexibility gradient of the synaptosomal membrane at 20 degrees C, a temperature at which the acyl chain labels detected a structural change in the membranes. At temperatures lower than 20 degrees C, the Mojave toxin produced a change in the flexibility gradient of the synaptosomal membrane which indicated an increased disordering in the upper region of the membrane and a concomitant increased ordering of the acyl chains in the deeper regions of the membrane. At temperatures higher than 20 degrees C, the order profile of the synaptosomal membrane was shifted by the presence of the Mojave toxin in a manner which indicated that the outer parts of the membrane were more rigid and the inner regions more fluid, than in controls. A cross-over point for the perturbation occurred at C8-9, which is about 12-14 A into the membrane. This is the approximate depth of the hydrophobic pocket shown in pancreatic phospholipase A2 [Drenth et al. (1976) Nature (Lond.) 264, 373-377], a protein likely to be homologous to the basic subunit of the toxin. At all temperatures, rotational lipid motion was inhibited by the toxin as indicated by the steroid probe. The electron spin-resonance spin-label results are interpreted in terms of the partial penetration of the basic subunit of the intact toxin into the membrane, disordering the ordered chains at low temperature and ordering the disordered chains at physiological temperatures. The purified individual toxin subunits did not perturb the membrane lipids at physiological temperatures implying that both subunits must be associated for activity of the toxin which is confirmed by toxicity studies.  相似文献   

6.
To determine whether certain outer membrane proteins are associated with growth of Bacteroides thetaiotaomicron on polysaccharides, we developed a procedure for separating outer membranes from inner membranes by sucrose density centrifugation. Cell extracts in 10% (wt/vol) sucrose-10 mM HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) were separated into two fractions on a two-step (37 and 70% [wt/vol]) sucrose gradient. These fractions were further resolved into outer membranes (p = 1.21 g/cm3) and inner membranes (p = 1.14 g/cm3) on sucrose gradients. About 20 to 26% of the total 3-hydroxy fatty acids from lipopolysaccharide and 2 to 3% of the total cellular succinate dehydrogenase activity were recovered in the outer membrane preparation. The inner membrane preparation contained 22 to 49% of the total succinate dehydrogenase activity and 2 to 3% of the total 3-hydroxy fatty acids from lipopolysaccharide. Outer membranes contained a lower concentration of protein (0.34 mg/mg [dry weight]) than did the inner membranes (0.68 mg/mg [dry weight]). Molecular weights of inner membrane polypeptides ranged from 11,000 to 133,000. The most prominent polypeptides had molecular weights ranging from 11,000 to 26,000. In contrast, the molecular weights of outer membrane polypeptides ranged from 17,000 to 117,000. The most prominent polypeptides had molecular weights ranging from 42,000 to 117,000. There were several polypeptides in the outer membranes of bacteria grown on polysaccharides (chondroitin sulfate, arabinogalactan, or polygalacturonic acid) which were not detected or were not as prominent in outer membranes of bacteria grown on monosaccharide components of these polysaccharides.  相似文献   

7.
In 55 clinical isolates of Vibrio cholerae biotype El Tor, cholera toxin (CT) production was higher after growth in liquid medium first under relatively anaerobic conditions followed by excessive aeration (AKI conditions) as compared with growth under the optimal conditions for CT production from V. cholerae of classical biotype (median toxin level being 400 ng ml-1 and 1 ng ml-1 respectively, for the two different growth conditions). Large growth volumes further enhanced El Tor toxin production to levels at or above 3-5 micrograms ml-1 from several strains, which allowed for easy purification of toxin by salt precipitation, aluminium hydroxide adsorption and/or GM1 ganglioside affinity chromatography. However, such purified El Tor CT completely lacked the A subunit when examined by SDS-PAGE or by monoclonal anti-A subunit antibody GM1-ELISA. In contrast, when El Tor CT was prepared from bacteria grown in the presence of specific antiserum against soluble haemagglutinin/protease it contained the A subunit (unnicked) in the same proportion to the B subunit (1A:5B) as classical CT. Immunodiffusion-in-gel tests revealed that the B subunits of El Tor and classical CTs share major epitopes but also have one or more weaker biotype-specific epitopes. The two types of toxin were practically indistinguishable in various GM1-ELISA tests, and antisera raised against El Tor and classical CT, respectively, could also completely neutralize the heterologous as well as the homologous toxin activity in vivo. The results indicate that CTs from El Tor and classical V. cholerae, despite demonstrable epitope differences, are predominantly cross-reactive and give rise to antisera with strong cross-neutralizing activity.  相似文献   

8.
Chloroplast ribosomes in greening cells of Euglena gracilis are found either in the stroma or bound to thylakoid membranes. The membrane-bound chloroplast ribosomes are of two main types: those which can be released by 0.5 M KCl or by puromycin and 0.5 M KCl, and those which are released by detergent (deoxycholate or Triton X-100) and KCl. The ribosomes which are released by puromycin are presumably bound to chloroplast membrane by nascent peptide chains. Ribosomes released by puromycin are found only during the course of plastidial differentiation at the time of active thylacoid membrane synthesis. Following greening, those ribosomes remain bound to the membranes but can be removed by KCl alone. An analysis of RNA labelling showed that 30-S but not 53-S subunits of membrane-bound ribosomes are of uniform specific activity. This suggests that 30-S subunit exchange in a common pool while 53 S subunits remain membrane bound and do not exchange in a common pool. Membrane-bound chloroplast ribosomes which are released either by puromycin or by detergent are originally derived from loosely bound particles, released by 0.5 M KCl.  相似文献   

9.
M J Stark  A Boyd 《The EMBO journal》1986,5(8):1995-2002
The killer character of the yeast Kluyveromyces lactis is associated with the presence of the linear DNA plasmids k1 and k2 and results from the secretion of a protein toxin into the growth medium. We find that toxin activity co-purifies with three polypeptides which we have termed the alpha- (mol. wt 99,000), beta- (mol. wt 30,000) and gamma- (mol. wt 27,500) subunits. The alpha-subunit appears to contain a single asparagine-linked oligosaccharide chain but neither of the smaller subunits is glycosylated. The N-terminal amino acid sequence of each subunit has been determined. Comparison of these data with the DNA sequence of plasmid k1 indicates that it encodes all three subunits. The alpha- and beta-subunits must be processed from the primary translation product of a single gene by an enzyme related to the KEX2 endopeptidase of Saccharomyces cerevisiae.  相似文献   

10.
The immunomodulating properties of a low cholera toxin (CT) dose over the systemic antibody response against Vibrio cholerae antigens after a comparatively extensive period of time were evaluated. Groups of 10 mice were injected intraperitoneally three times at 0, 30 and 86 days with 500 microl of buffer or 10(8) viable recombinant V. cholerae bacteria (lacking cholera toxin A subunit) with or without 100 ng of CT. Sera were obtained from inoculated mice at 0, 14, 28, 37, 58, 80, 93, 114, 236 and 356 days after the first injection. Vibriocidal activity and IgM and IgG anti-lipopolysaccharide (LPS) or outer membrane protein (OMP) antibodies levels were estimated by ELISA in sera of inoculated mice. Anti-LPS IgG subclasses were measured 2 weeks after each immunization by ELISA. Treatment of mice with CT markedly influenced the immune response to LPS but not against OMP of V. cholerae. Simultaneous intraperitoneal administration of CT with V. cholerae resulted in marked enhancement of both IgM anti-LPS and vibriocidal titers which subsisted for a relatively extensive period of time after repeated antigen administration. No differences were observed in IgM and IgG anti-OMP titers after extended periods of time between CT and control treatments. A similar pattern of IgG anti-LPS subclasses was observed in the serum samples analyzed. These results suggest that long term CT administration modulates the IgM anti-V. cholerae LPS response and the serum vibriocidal activity.  相似文献   

11.
V Witzemann  M A Raftery 《Biochemistry》1977,16(26):5862-5868
A bisazido derivative was synthesized from bis(3-aminopyridinium)-1,10-decane diiodide and it was shown that it was bound (KD congruent to 2.2 muM) specifically to purified acetylcholine receptor and fulfilled the requirements for a photoaffinity label. Like the parent compound the derivative could transform membrane-bound receptor from a low ligand affinity conformation(s) to a high ligand affinity form (s), a transition which is thought to resemble desensitization processes observed in vivo. Photolysis of 3H-labeled bisazido reagent was carried out in the presence of the receptor. After dodecyl sulfate-polyacrylamide gel electrophoresis of labeled purified receptor two of the four subunits (mol wt 40 000 and 60 000) contained 90% of the bound radioactivity while for membrane-bound receptor the subunits of mol wt 40 000 and 50 000 were labeled. The results favor the assumption that the specific ligand binding sites are located on mol wt 40 000 subunits and labeling of the other subunits reflects (a) their proximity to the ligand-binding site and (b) alterations in subunit topography between membrane-bound and solubilized states.  相似文献   

12.
In this report, we show that fluoride activates dark-adapted rod outer segment phosphodiesterase, and that this activation is mediated, in analogy with adenylate cyclase, through a GTP binding protein. The GTP binding protein is released from dark-adapted rod outer segment membranes by exposure to fluoride and subsequent centrifugation. The 39-kilodalton subunit of the GTP binding protein, released from the membrane by this procedure, exhibits altered susceptibility to limited trypsin proteolysis, identical to that seen when hydrolysis-resistant GTP analogs are bound to that subunit. Repeated exposure of dark-adapted rod outer segment membranes to fluoride and subsequent centrifugation results in maximal activation of the membrane-bound phosphodiesterase. Thus, activation of phosphodiesterase by fluoride in the dark appears similar to fluoride activation of adenylate cyclase.  相似文献   

13.
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane V(o) and catalytic V(1) sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 degrees C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 degrees C. Corresponding to the reversible defect of the hybrid V-ATPase, the V(o) subunit a epitope was exposed to the corresponding antibody at 37 degrees C, but became inaccessible at 30 degrees C. However, the V(1) sector was still associated with V(o) at 37 degrees C, as shown immunochemically. The control yeast V-ATPase was active at 37 degrees C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V(1) from V(o) in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.  相似文献   

14.
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.  相似文献   

15.
Gene fusions between the cholera toxin structural genes and phoA, which encodes bacterial alkaline phosphatase, were identified after TnphoA mutagenesis of the cloned genes in Escherichia coli and were then mobilized into Vibrio cholerae. The activities of the hybrid proteins were detectable in V. cholerae and suggested that, like cholera toxin, they were secreted beyond the cytoplasm. To extend the utility of TnphoA to identify additional genetic export signals in V. cholerae and other gram-negative bacteria, TnphoA delivery vectors utilizing broad-host-range plasmids were developed. By using V. cholerae as a model system, insertion mutants carrying active phoA gene fusions were identified as colonies expressing alkaline phosphatase, which appeared blue on agar containing the indicator 5-bromo-4-chloro-3-indolyl phosphate. Since alkaline phosphatase is active only upon export from the cytoplasm, PhoA+ colonies resulting from the mutagenesis procedure were enriched for insertions in genes that encode secreted proteins. Insertion mutations were identified in the gene encoding a major outer membrane protein, OmpV, and in tcpA, which encodes a pilus (fimbrial) subunit. Mutant strains harboring chromosomal insertions isolated in this manner can be used to assess the role of the corresponding inactivated gene products on survival of V. cholerae in vivo. The expression of the hybrid proteins as determined by measuring alkaline phosphatase activity also allowed the convenient study of virulence gene expression.  相似文献   

16.
17.
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane.  相似文献   

18.
In Gram-negative bacteria, lipoproteins are targeted to either the inner or outer membrane depending on their sorting signals. An ABC transporter LolCDE complex in Escherichia coli releases outer membrane-specific lipoproteins. Inner membrane-specific lipoproteins remain in the inner membrane because they each have a LolCDE-avoidance signal and therefore are not released by LolCDE. Only the LolC(A40P) mutation was previously found to cause outer membrane localization of lipoproteins despite their inner membrane-retention signals. Here, we isolated several new LolCDE mutants that cause outer membrane localization of lipoproteins possessing LolCDE-avoidance signals. Mutations were found in all three subunits of LolCDE, including the cytoplasmic ATPase subunit LolD. However, the extent of outer membrane sorting of inner membrane-specific lipoproteins differed depending on the mutation. Based on these observations, the molecular events underlying the recognition of lipoproteins by the LolCDE complex are discussed.  相似文献   

19.
A presynaptic neurotoxin isolated from the venom of the Central Asia spider karakurt (Black Widow Spider, Latrodectus mactans tredecimguttatus) is shown to consist of two identical subunits of mol. weight about 118 kDa. The iodinated neurotoxin binds to the rat brain synaptosomal plasma membranes with Kd 0.1 nM (Bmax 0.1 pmol/mg of protein) at 37 degrees C, and with Kd 0.35 nM (Bmax 0.2 pmol/mg of protein) at 5 degrees C. At intermediate temperatures both types of receptors are detectable. It is supposed that the dimeric form of the toxin interacts with a single class of receptors possessing lateral mobility in the membrane. By the use of different bifunctional reagents it is revealed that the neurotoxin interacts with a presynaptic membrane protein of mol. weight 95 kDa. A protein of the same size accompanied by a 71 kDa protein was isolated by the affinity chromatography of solubilized synaptosomal membranes on the absorbent, containing immobilized neurotoxin.  相似文献   

20.
Abstract The adhesive capabilities of eight Vibrio cholerae O139 epidemic strains to isolated rabbit intestinal epithelial cells (RIEC) were observed to be high similar to those observed with a Vibrio cholerae O1 strain isolated from patients. Toxin production by the strains, measured by accumulation of fluid in rabbit ileal loop model, was high and the toxin was lethal as the animal expired within 6 h. Culture filtrates of the strains exhibited the presence of vascular permeability factor which produce induration and necrosis in the adult rabbit and guinea pig skin. All the strains showed high to moderate haemagglutinin titres against chicken erythrocytes and produced El Tor-like haemolysin. SDS-PAGE of the outer membrane preparation of the strains showed the presence of major protein component at 38 kDa region. The lethality of the toxin, high adhesive activity, shifting of the major outer membrane protein band and production of thermolabile haemolysin on Wagatsuma agar were the major variations of these epidemic strains from V. cholerae O1 and V. cholerae non-O1 strains isolated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号