首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background/purpose

The goal of this study was to determine the role of the collagen binding receptor integrin α1β1 in regulating osmotically induced [Ca2+]i transients in chondrocytes.

Method

The [Ca2+]i transient response of chondrocytes to osmotic stress was measured using real-time confocal microscopy. Chondrocytes from wildtype and integrin α1-null mice were imaged ex vivo (in the cartilage of intact murine femora) and in vitro (isolated from the matrix, attached to glass coverslips). Immunocytochemistry was performed to detect the presence of the osmosensor, transient receptor potential vanilloid-4 (TRPV4), and the agonist GSK1016790A (GSK101) was used to test for its functionality on chondrocytes from wildtype and integrin α1-null mice.

Results/interpretation

Deletion of the integrin α1 subunit inhibited the ability of chondrocytes to respond to a hypo-osmotic stress with [Ca2+]i transients ex vivo and in vitro. The percentage of chondrocytes responding ex vivo was smaller than in vitro and of the cells that responded, more single [Ca2+]i transients were observed ex vivo compared to in vitro. Immunocytochemistry confirmed the presence of TRPV4 on wildtype and integrin α1-null chondrocytes, however application of GSK101 revealed that TRPV4 could be activated on wildtype but not integrin α1-null chondrocytes. Integrin α1β1 is a key participant in chondrocyte transduction of a hypo-osmotic stress. Furthermore, the mechanism by which integrin α1β1 influences osmotransduction is independent of matrix binding, but likely dependent on the chondrocyte osmosensor TRPV4.  相似文献   

2.
Thirty-six symbiotic associations involving six chickpea cultivars against six rhizobial strains were evaluated for symbiotic performance and responses to osmotic stress applied by mannitol (50 mM) in aerated hydroponic cultures. Analyses in different symbioses were focused on biomass production, nodulation, nitrogen fixation, and their modulation under osmotic stress conditions, as well as expression of nodular antioxidant enzymes. Mesorhizobium ciceri reference (835) and local (CMG6) strains, as well as the local (C11) M. mediterraneum allowed the best symbiotic efficiency for all chickpea cultivars. The osmotic stress induces severe decrease ranging 30–50% in aerial biomass and 50–70% for nitrogen fixation. Nevertheless, plants inoculated with M. ciceri (835) and M. mediterraneum (C11) preserve a relatively high growth (4 g plant−1) with nitrogen-fixing activity (25 μmols h−1 plant−1). The bacterial partner was the most important factor of variance of the analysed parameters in osmotic stress or physiological conditions where it gets to 60–85%. The strains allowing the best competent symbioses were proposed for field assays. Under osmotic stress, nodular peroxidase (POX) and ascorbate peroxidase (APX) activities were significantly enhanced. The increase of POX and APX was inversely correlated with the inhibition of aerial biomass production (= 0.05) and nitrogen-fixing capacity (= 0.01), suggesting a protective role of these enzymes in nodules. Superoxide dismutase (SOD) was also activated in stressed nodules. However, the spectacular decrease in catalase (CAT) activity discounts its involvement in osmotic stress response.  相似文献   

3.
4.
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.  相似文献   

5.
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx, of calcium (i.e. calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

6.
The effect of water stress was investigated in plants from two populations of Atriplex halimus L: Tensift issued from a salt-affected coastal area and Kairouan, originating from an inland dried site. Water deficit was applied by withholding water for 22 days. Shoot dry weight (shoot DW), leaf relative water content (RWC), turgid weight to dry weight ratio (TW/DW), osmotic potential (psis), osmotic adjustment (OA), proline, glycinebetaine, and sugar content were determined 1, 8, 15 and 22 days after withholding watering. Water stress induced a decrease in shoot DW, RWC, psis, and TW/DW, but an increase in glycinebetaine and sugar leaf contents. The decrease of psis and TW/DW was more marked in Kairouan than in Tensift. At the end of the stress period, Kairouan showed a greater OA compared with Tensift. However, the contribution of net solute accumulation (OAacc) was similar in both populations in response to stress. Water stress resistance could thus not be associated with higher OA, although the ability of plants to regulate these metabolic and physiological functions could play an important role under harmful conditions. The possible roles of osmolyte accumulations are discussed in relation to the specific physiological strategy of water-stress-resistance in this species.  相似文献   

7.
8.
The incorporation of labeled precursors into RNAs and proteins of isolated tobacco (Nicotiana tabacum L.) leaf protoplasts decreases with increasing osmotic pressure in the incubation medium. The incorporation of precursors into RNA and proteins is linear for 15–18 h after the isolation of the protoplasts, irrespective of the osmolarity of the culture media. The uptake of precursors is also affected by the osmolarity of the medium. However, the osmotic stress-induced inhibition of incorporation of precursors into RNA and proteins is also apparent if the differences in uptake are taken into consideration in the calculation. Incorporation of 32P into TMV-RNA is also inhibited by osmotic stress. As assayed by the double labeling ratio technique, osmotic stress has less unequivocal effect on TMV protein synthesis.Abbreviations PP protoplast - RNase ribonuclease - rRNA ribosomal ribonucleic acid - SDS sodium dodecyl sulfate - SSC 0.1 M Na-acetate in 0.15 M NaCl - TCA trichloroacetic acid - TMV tobacco mosaic virus  相似文献   

9.
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis.  相似文献   

10.
The potential value of proline accumulation during environmental stressreveals a collection of controversial statements. Some argue that prolineaccumulation is beneficial to the plant, while others suggest the oppositeto be true. It is thus still unknown whether or not a constitutive higherlevel of proline accumulation enhances plant tolerance to environmentalstress. Since proline in plants is synthesised from both glutamic acid andornithine, we generated antisense soybean plants with an L-1-pyrroline-5-carboxylate reductase (P5CR)gene, as it controls thecommon step of both pathways. The gene expression and consequentlyproline production was manipulated, with the use of an inducible heat shockpromoter (IHSP). The activation of the IHSP resulted in the inactivation ofthe P5CR gene, which resulted in decreased proline synthesis. Theantisense plants have provided us with insight into the correlation betweenproline accumulation, drought and osmotic stress. A mannitol stress at 32and 42 °C enhanced the accumulation of proline in control plants, incontrast to a significant decrease observed in the transformants. Theproline accumulation documented in this paper provides additional evidencethat the increase in proline levels during osmotic stress constitute anadaptive response by the plant. It was confirmed that there is anassociation between P5CR translation and proline accumulation, as theproline accumulation was markedly decreased by the activation of the heatinducible promoter and thus the antisense construct in transformed plants.A woodenbox screening indicated that proline plays a definite role insurvival of soybean plants under a drought stress, the transformantsfailed to survive a 6 day drought stress at 37 °C. This was in contrastwith the control plants which experienced the treatment only as a mildstress.  相似文献   

11.
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.  相似文献   

12.
No information is currently available in plants concerning the tyrosyl-DNA phosphodiesterase 2 (Tdp2) enzyme which in animals is involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signaling. Bioinformatic investigation revealed the occurrence in the plant kingdom of three distinct Tdp2 isoforms, named α, β and γ. The MtTdp2α gene from Medicago truncatula Gaertn., encoding a protein with putative nuclear localization signal and chloroplast transit peptide, was significantly up-regulated in response to osmotic stress induced by polyethylene glycol. The transgenic M. truncatula lines Tdp2α-13C and Tdp2α-28 overexpressing the MtTdp2α gene were characterised by enhanced tolerance to both osmotic and photo-oxidative stress. According to single cell gel electrophoresis, MtTdp2α gene overexpression prevented accumulation of double strand breaks in absence and presence of osmotic stress. Interestingly, the MtMRE11, MtRAD50 and MtNBS1 genes involved in double strand break sensing/repair were significantly up-regulated in the MtTdp2α-overexpressing plants grown under physiological conditions and no further up-regulation occurred in response the osmotic agent. The Tdp2α-13C and Tdp2α-28 lines also showed significant up-regulation of several genes essential for the control of DNA topology and genome maintenance, such as MtTdp1α, MtTop2 (DNA topoisomerase II) and MtGYR (DNA gyrase). The role of MtTdp2α gene in enhancing the plant response to genotoxic injury under osmotic stress is discussed.  相似文献   

13.
The osmotic activation of sigma B (σ(B)) in Listeria monocytogenes was studied by monitoring expression of four known σ(B)-dependent genes, opuCA, lmo2230, lmo2085, and sigB. Activation was found to be rapid, transient, and proportional to the magnitude of the osmotic stress applied, features that underpin the adaptability of this pathogen.  相似文献   

14.
Xu ZY  Lee KH  Dong T  Jeong JC  Jin JB  Kanno Y  Kim DH  Kim SY  Seo M  Bressan RA  Yun DJ  Hwang I 《The Plant cell》2012,24(5):2184-2199
The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses.  相似文献   

15.
16.
Plants generally accumulate free proline under osmotic stress conditions. Upon removal of the osmotic stress, the proline levels return to normal. In order to understand the mechanisms involved in regulating the levels of proline, we cloned and characterized a proline dehydrogenase (PDH) cDNA from Arabidopsis thaliana (AtPDH). The 1745?bp cDNA contains a major open reading frame encoding a peptide of 499 amino acids. The deduced amino acid sequence has high homology with both Saccharomyces cerevisiae and Drosophila melanogaster proline oxidases and contains a putative mitochondrial targeting sequence. When expressed in yeast, the AtPDH cDNA complemented a yeast put1 mutation and exhibited proline oxidase activity. We also determined the free proline contents and the Δ1-pyrroline-5-carboxylate synthetase (P5CS) and PDH mRNA levels under different osmotic stress and recovery conditions. The results demonstrated that the removal of free proline during the recovery from salinity or dehydration stress involves an induction of the PDH gene while the activity of P5CS declines. The reciprocal regulation of P5CS and PDH genes appears to be a key mechanism in the control of the levels of proline during and after osmotic stress. The PDH gene was also significantly induced by exogenously applied proline. The induction of PDH by proline, however, was inhibited by salt stress.  相似文献   

17.
The kinetics of the fusion process of unsealed and resealed erthyrocyte ghosts with influenza virus (A/PR8/34, A/Chile 1/83), were measured under hypotonic, isotonic and hypertonic conditions using a recently developed fluorescence assay (Hoekstraet al. (1984)Biochemistry 23:5675–5681]. No correlation between the external osmotic pressure and kinetics and extent of fusion was observed. Influenza viruses fuse as effectively with unsealed ghosts as with resealed ghosts. It is concluded that osmotic forces as well as osmotic swelling of cells are not necessary for virus-cell membrane fusion.  相似文献   

18.
Aims Two-year-old seedlings of Phoebe zhennan were used in this study to explore the responses of osmotic adjustment and active oxygen metabolism to drought stress and the mitigation effect of nitrogen application. Methods The soil water content was firstly adjusted to four treatment levels, i.e. 80% of field water holding capacity (80% FC), 50% FC, 30% FC and 15% FC, respectively. The physiological variables of plants were measured after one week, and then three nitrogen application rates, control (N0), medium nitrogen (MN) and high nitrogen (HN) were performed at an interval of 7 days for four times (7 d, 14 d, 21 d and 28 d, respectively). The same physiological variables were determined again one month after the accomplishment of nitrogen application. Important findings 1) The free proline (Pro) and soluble sugar (SS) contents in the leaves increased significantly with the aggravation of drought stress after 7 days of drought, but the content of soluble protein (SP) was firstly increased and then declined. The increase of Pro content was especially obvious under severe drought (15% FC). After nitrogen application, the content of Pro raise further, but the values varied in drought treatment. The SS contents under sufficient water supply (80% FC) and mild drought (50% FC) were decreased by MN, but it did not change significantly when supplied with HN despite the soil water content. After nitrogen application, the SP contents under 80% FC and 50% FC were lower than those of no exogenous N, while they were opposite response under 30% FC and 15% FC. 2) Before nitrogen application, with the aggravation of drought stress, the hydrogen peroxide (H2O2) content, superoxide dismutase (SOD) activity, catalase (CAT) activity increased significantly, and the peroxidase (POD) activity showed an up-down trend. After nitrogen application, the content of H2O2 was generally deceased at each water condition, with the maximum decrease at MN, while the HN treatment was not conducive to reduce the content of H2O2. The activities of three kinds of enzymes responded differently to the severity of drought and the level of nitrogen application. 3) Before nitrogen application, the content of malondial-dehyde (MDA) in leaves increased significantly when the soil water content declined to and below 50% FC. The relative electrical conductivity (REC) was decreased at first, and followed by significant increase. Except severe drought (15% FC) stress, the MDA content showed a decreasing trend at MN, but a rebound at HN. As regards severe drought stress, however, the content of MDA increased at both MN and HN, indicating that nitrogen application is not a good choice to alleviate the damage caused by severe drought stress. 4)Two-factor ANOVA revealed an obvious interaction between nitrogen application and drought stress. In conclusion, a proper amount of nitrogen (1.35 g·a–1 for each sapling) could somewhat alleviate drought stress no severer than 15% FC on seedlings of Phoebe zhennan, but excessive nitrogen at rate of or more than 2.70 g·a–1 per sapling is not recommended. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

19.
The hypothesis that the promotive effect of the embryo axis of the germinating bean seed on amylase activity in the cotyledons is mediated by an osmoregulative mechanism was examined. After 2 days of germination the action of the axis on amylolytic activity was already clearly revealed, whereas at the same time it did not have any influence on osmotic pressure in the cotyledons. When the axis was attached to one cotyledon during 4 days of incubation, osmotic pressure in the cotyledon was lower than its value in the cotyledons of the intact seedling, whereas amylolytic activity was similar in both treatments. It was concluded that the tested hypothesis is not valid in the case of the bean seedling. External osmotic agents brought about a decrease in the level of amylase in the cotyledons, but this does not prove that osmotic changes which are brought about by production of internal metabolites are involved in the regulation of amylase synthesis.  相似文献   

20.
Cell density and morphology changes were tested to examine the effects of salts including NaHCO3, NaCl, KHCO3, and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt‐treated cells survive and cell size was 36–58% smaller than the regular. The disappearance of salt‐treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG‐treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt‐treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418–1424, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号