首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein remain unclear. One model proposes that mitochondrial generation of reactive oxygen species is required to stabilize HIF-1alpha protein. Primary evidence for this model comes from the observation that cells treated with complex I inhibitors, such as rotenone, or cells that lack mitochondrial DNA (rho(0)-cells) fail to generate reactive oxygen species or stabilize HIF-1alpha protein in response to hypoxia. In the present study, we investigated the role of mitochondria in regulating HIF-1alpha protein stabilization under anoxia (0% O2). Wild-type A549 and HT1080 cells stabilized HIF-1alpha protein in response to hypoxia and anoxia. The rho(0)-A549 cells and rho(0)-HT1080 cells failed to accumulate HIF-1alpha protein in response to hypoxia. However, both rho(0)-A549 and rho(0)-HT1080 were able to stabilize HIF-1alpha protein levels in response to anoxia. Rotenone inhibited hypoxic, but not anoxic, stabilization of HIF-1alpha protein. These results indicate that a functional electron transport chain is required for hypoxic but not anoxic stabilization of HIF-1alpha protein.  相似文献   

3.
4.
5.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

6.
During low O2 (hypoxia), hypoxia-inducible factor (HIF)-alpha is stabilized and translocates to the nucleus, where it regulates genes critical for survival and/or adaptation in low O2. While it appears that mitochondria play a critical role in HIF induction, controversy surrounds the underlying mechanism(s). To address this, we monitored HIF-2alpha expression and oxygen consumption in an O2-sensitive immortalized rat adrenomedullary chromaffin (MAH) cell line. Hypoxia (2-8% O2) caused a concentration- and time-dependent increase in HIF-2alpha induction, which was blocked in MAH cells with either RNA interference knockdown of the Rieske Fe-S protein, a component of complex III, or knockdown of cytochrome-c oxidase subunit of complex IV, or defective mitochondrial DNA (rho0 cells). Additionally, pharmacological inhibitors of mitochondrial complexes I, III, IV, i.e., rotenone (1 microM), myxothiazol (1 microM), antimycin A (1 microg/ml), and cyanide (1 mM), blocked HIF-2alpha induction in control MAH cells. Interestingly, the inhibitory effects of the mitochondrial inhibitors were dependent on O2 concentration such that at moderate-to-severe hypoxia (6% O2), HIF-2alpha induction was blocked by low inhibitor concentrations that were ineffective at more severe hypoxia (2% O2). Manipulation of the levels of reactive oxygen species (ROS) had no effect on HIF-2alpha induction. These data suggest that in this O2-sensitive cell line, mitochondrial O2 consumption, rather than changes in ROS, regulates HIF-2alpha during hypoxia.  相似文献   

7.
8.
Hypoxia inducible factor 1 (HIF-1), a key regulator for adaptation to hypoxia, is composed of HIF-1alpha and HIF-1beta. In this study, we present evidence that overexpression of mitochondria-located thioredoxin 2 (Trx2) attenuated hypoxia-evoked HIF-1alpha accumulation, whereas cytosolic thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount. Transactivation of HIF-1 is decreased by overexpression of Trx2 but stimulated by Trx1. Inhibition of proteasomal degradation of HIF-1alpha in Trx2-overexpressing cells did not fully restore HIF-1alpha protein levels, while HIF-1alpha accumulation was enhanced in Trx1-overexpressing cells. Reporter assays showed that cap-dependent translation is increased by Trx1 and decreased by Trx2, whereas HIF-1alpha mRNA levels remained unaltered. These data suggest that thioredoxins affect the synthesis of HIF-1alpha. Trx1 facilitated synthesis of HIF-1alpha by activating Akt, p70S6K, and eIF-4E, known to control cap-dependent translation. In contrast, Trx2 attenuated activities of Akt, p70S6K, and eIF-4E and provoked an increase in mitochondrial reactive oxygen species production. MitoQ, a mitochondria specific antioxidant, reversed HIF-1alpha accumulation as well as Akt activation under hypoxia in Trx2 cells, supporting the notion of translation control mechanisms in affecting HIF-1alpha protein accumulation.  相似文献   

9.
10.
11.
During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1alpha protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (rho(0) cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H(2)O(2) stabilizes HIF-1alpha protein during normoxia and activates luciferase expression in wild-type and rho(0) cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1alpha stabilization during hypoxia.  相似文献   

12.
Oligomycin inhibits HIF-1alpha expression in hypoxic tumor cells   总被引:2,自引:0,他引:2  
Hypoxia-inducible factor-1 (HIF-1) is a key regulator of cellular responses to reduced oxygen availability. The contribution of mitochondria in regulation of HIF-1 in hypoxic cells has received recent attention. We demonstrate that inhibition of electron transport complexes I, III, and IV diminished hypoxic HIF-1 accumulation in different tumor cell lines. Hypoxia-induced HIF-1 accumulation was not prevented by the antioxidants Trolox and N-acetyl-cysteine. Oligomycin, inhibitor of F0F1-ATPase, prevented hypoxia-induced HIF-1 protein accumulation and had no effect on HIF-1 induction by hypoxia-mimicking agents desferrioxamine or dimethyloxalylglycine. The inhibitory effect of mitochondrial respiratory chain inhibitors and oligomycin on hypoxic HIF-1 content was pronounced in cells exposed to hypoxia (1.5% O2) but decreased markedly when cells were exposed to severe oxygen deprivation (anoxia). Taken together, these results do not support the role for mitochondrial reactive oxygen species in HIF-1 regulation, but rather suggest that inhibition of electron transport chain and impaired oxygen consumption affect HIF-1 accumulation in hypoxic cells indirectly via effects on prolyl hydroxylase function. hypoxia-inducible factor 1; oxygen sensing  相似文献   

13.
It has been postulated that 1-methyl-4-phenylpyridinium (MPP+) blocks mitochondrial respiration by combining at the same site as rotenone, a potent inhibitor of NADH oxidation in mitochondria, known to act at the junction of NADH dehydrogenase and coenzyme Q (CoQ). The present experiments show that MPP+ and two of its analogs indeed act in a concentration dependent manner to prevent the binding of [14C]-rotenone to submitochondrial particles (ETP) and significantly decrease the inhibition of electron transport caused by rotenone. It therefore appears that MPP+ binds at the same site as rotenone or an adjacent site, supporting the hypothesis that its neurotoxic action is due to the inhibition of mitochondrial respiration.  相似文献   

14.
15.
Nigrostriatal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease results from the inhibition of mitochondrial respiration by 1-methyl-4-phenylpyridinium (MPP+). MPP+ blocks electron flow from NADH dehydrogenase to coenzyme Q at or near the same site as do rotenone and piericidin and protects against binding of and loss of activity due to these inhibitors. The 4'-analogs of MPP+ showed increasing affinity for the site with increasing length of alkyl chain, with the lowest Ki, for 4'-heptyl-MPP+, being 6 microM. The 4'-analogs compete with rotenone for the binding site in a concentration-dependent manner. They protect the activity of the enzyme from inhibition by piericidin in parallel to preventing its binding, indicating that the analogs and piericidin bind at the same inhibitory site(s). The optimum protection, however, was afforded by 4'-propyl-MPP+. The lesser protection by the more lipophilic MPP+ analogs with longer alkyl chains may involve a different orientation in the hydrophobic cleft, allowing rotenone and piericidin to still bind even when the pyridinium cation is in a position to interrupt electron flow from NADH to coenzyme Q.  相似文献   

16.
We analyzed the role of Hypoxia-inducible factor (HIF)-1alpha in myoblast differentiation by examining the expression and regulation of HIF-1alpha in proliferating and differentiating C2C12 myoblast, and by knocking down HIF-1alpha of C2C12 myoblasts with small interfering RNA (siRNA), given that HIF-1alpha has been shown to be involved in differentiative process in non-muscle tissues. Although HIF-1alpha mRNA was constantly expressed in C2C12 myoblasts both under growth and differentiating phase, HIF-1alpha protein was hardly detectable in the growth phase but became detectable only during myogenic differentiation even under normoxia. During early stage of C2C12 myogenesis, HIF-1alpha accumulated in the nuclei of myogenin-positive myoblasts. The inhibition of proteasome in the growth phase led to HIF-1alpha protein accumulation, whereas in the differentiation phase the inhibition of Hsp90, which stabilizes HIF-1alpha, suppressed HIF-1alpha accumulation. Therefore, we suggest that the level of HIF-1alpha protein expression is regulated by a proteasome-and chaperon-dependent pathway in C2C12 myoblast. Knockdown of HIF-1alpha effectively blocked myotube formation and myosin heavy chain (MHC) expression. Finally, HIF-1alpha expression in vivo was confirmed in the regenerative muscle tissue of mice after eccentric exercise. We conclude that HIF-1alpha is required for C2C12 myogenesis in vitro, and suggest that HIF-1alpha may have an essential role in regenerative muscle tissue in vivo.  相似文献   

17.
Tissue hypoxia/ischemia are major pathophysiological determinants. Conditions of decreased oxygen availability provoke accumulation and activation of hypoxia-inducible factor-1 (HIF-1). Recent reports demonstrate a crucial role of HIF-1 for inflammatory events. Regulation of hypoxic responses by the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS) is believed to be of pathophysiolgical relevance. It is reported that hypoxic stabilization of HIF-1alpha can be antagonized by NO due to its ability to attenuate mitochondrial electron transport. Likely, the formation of ROS could contribute to this effect. As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells. Treatment of A549, HEK293, HepG2, and COS cells with DMNQ resulted in a concentration-dependent raise in ROS which correlated with HIF-1alpha accumulation. By using a HIF-1alpha-von Hippel-Lindau tumor suppressor protein binding assay, we show that ROS produced by DMNQ impaired prolyl hydroxylase activity. When HIF-1alpha is stabilized by NO, low concentrations of DMNQ (<1 microM) revealed no effect, intermediate concentrations of 1 to 40 microM DMNQ attenuated HIF-1alpha accumulation and higher concentrations of DMNQ promoted HIF-1alpha stability. Attenuation of NO-induced HIF-1alpha stability regulation by ROS was mediated by an active proteasomal degradation pathway. In conclusion, we propose that scavenging of NO by ROS and vice versa attenuate HIF-1alpha accumulation in a concentration-dependent manner. This is important to fully elucidate HIF-1alpha regulation under inflammatory conditions.  相似文献   

18.
We have investigated here the mechanism of dephosphorylation and activation of death-associated protein kinase (DAPK) and the role of lysosome in neuroblastoma cells (SH-SY5Y) treated with mitochondrial toxins, such as MPP(+) and rotenone. Mitochondrial respiratory chain inhibitors and uncouplers decreased mitochondrial membrane potential leading to DAPK dephosphorylation and activation. The class III phosphoinositide 3-kinase inhibitors attenuated DAPK dephosphorylation induced by mitochondrial toxins. Complex I inhibition by mitochondrial toxins (e.g. MPP(+)) resulted in mitochondrial swelling and lysosome reduction. Inhibition of class III phosphoinositide 3-kinase attenuated MPP(+)-induced lysosome reduction and cell death. The role of DAPK as a sensor of mitochondrial membrane potential in mitochondrial diseases was addressed.  相似文献   

19.
20.
Parkinson's disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction. The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson's like syndromes in animal models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP(+)), and 6-hydroxydopamine (6-OHDA), have been shown to induce dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses characteristics of Parkinson's disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS) production. Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of mitochondrial basal oxygen consumption rate (OCR) concomitant with a decrease of ATP-linked OCR and reserve capacity, as well as a stimulation of glycolysis. MPP(+) exhibited a different behavior with less pronounced cell death at doses that nearly eliminated basal and ATP-linked OCR. Interestingly, MPP(+), unlike rotenone, stimulated bioenergetic reserve capacity. The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP(+) at cytotoxic doses, suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号