首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A biofilm reactor not only shortens the lag phase of nisin production, but also enhances nisin production when combined with an appropriate pH profile. Due to the substrate inhibition that takes place at high levels of carbon source, fed-batch fermentation was proposed as a better alternative for nisin production. In this study, the combined effects of fed-batch fermentation and various pH profiles on nisin production in a biofilm reactor were evaluated. The tested pH profiles include 1) a constant pH profile at 6.8 (profile 1), 2) a constant pH profile with an autoacidification after 4 h (profile 2), and 3) a step-wise pH profile with pH adjustment every 2 h (profile 3). When profile 1 was applied, fed-batch fermentation enhanced nisin production for both suspended-cell (4,188 IU ml−1) and biofilm (4,314 IU ml−1) reactors, yielded 1.8- and 2.3-fold higher nisin titer than their respective batch fermentation. On the other hand, pH profiles that include periods of autoacidification (profiles 2 and 3) resulted in a significantly lower nisin production in fed-batch fermentation (2,494 and 1,861 IU ml−1 for biofilm reactor using profile 2 and 3, respectively) due to toxicity of excess lactic acid produced during the fermentation. Overall, this study suggested that fed-batch fermentation can be successfully used to enhance nisin production for both suspended-cell and biofilm reactors.  相似文献   

2.
Effects of pH profiles on nisin fermentation coupling with foam separation   总被引:1,自引:0,他引:1  
Online foam separation was proposed to recover nisin during fermentation of Lactococcus lactis subsp. lactis ATCC 11454. Firstly, the optimal pH profile of nisin fermentation was investigated including different realkalization set values and pH drop gradients. Then the selected pH profiles of 5.75 ± 0.05 and 6.25–5.75 (±0.02) were used to perform nisin fermentation coupling with foam separation. The results showed that pH profile of 5.75 ± 0.05 was better than that of 6.25–5.75 (±0.02) for online foam separation. With the optimal pH profile, an aeration of 20 ml min−1 that started at 8 h of incubation and lasted for 2 h resulted in 6.6 times higher specific productivity than that of the fermentation without aeration. Nisin synthesis was therefore prolonged with low sucrose concentration in the culture broth, which indicated that the feedback inhibition of nisin is more influential than the substrate limitation of sucrose in the late phase of nisin fermentation. Total nisin production (4,870 ± 180 IU ml−1) was increased by 30.3% with online foam separation. This effective online recovery method for nisin production could be easily scaled up due to the facile operation of foaming process.  相似文献   

3.
The production of nisin, biomass and lactic acid in pH-controlled and uncontrolled batch fermentation and batch fermentation (pH 5.5) with continuous removal of nisin was examined in the parent strain Lactococcus lactis N8 and LAC48. Strain LAC48 in batch fermentor (pH not controlled) gave a maximum nisin concentration of 2.5×106 IU g dcw–1. The nisin concentration remained high (2.0×106 IU g dcw–1) after the logarithmic growth phase (10–22 h), whereas nisin production of strain N8 decreased after the logarithmic growth phase. The maximum nisin production of strain LAC48 was not directly related to the biomass formation and not associated with growth. In order to study end product inhibition in nisin production, a system was built for adsorption of nisin during fermentation. The adsorbent Amberlite XAD-4 was found to have an effective binding capacity for nisin. Cells of LAC48 and N8 compensated for the removal of nisin, indicating that nisin production also occurs in the stationary phase.  相似文献   

4.
Aims: To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model. Methods and Results: The lowest concentration of nisin tested (5 IU ml?1) effectively controlled the contamination of YP/glucose media with 106 CFU ml?1 lactobacilli. Lactic acid yield decreased from 5·0 to 2·0 g l?1 and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7·8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml?1 nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested. Conclusions: Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml?1 nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast. Significance and Impact of the Study: Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic‐resistant contaminating strains.  相似文献   

5.
Nisin production in batch culture and fed-batch cultures (sucrose feeding rates were 6, 7, 8, and 10 g l–1 h–1, respectively) by Lactococcus lactis subsp. lactis ATCC 11454 was investigated. Nisin production showed primary metabolite kinetics, and could be improved apparently by altering the feeding strategy. The nisin titer reached its maximum, 4,185 IU ml–1, by constant addition of sucrose at a feeding rate of 7 g l–1 h–1; an increase in 58% over that of the batch culture (2,658 IU ml–1). Nisin biosynthesis was affected strongly by the residual sucrose concentration during the feeding. Finally, a mathematical model was developed to simulate the cell growth, sucrose consumption, lactic acid production and nisin production. The model was able to describe the fermentation process in all cases.  相似文献   

6.
Streptomyces sp. QG-11-3, which produces a cellulase-free thermostable xylanase (96 IU ml−1) and a pectinase (46 IU ml−1), was isolated on Horikoshi medium supplemented with 1% w/v wheat bran. Carbon sources that favored xylanase production were rice bran (82 IU ml−1) and birch-wood xylan (81 IU ml−1); pectinase production was also stimulated by pectin and cotton seed cake (34 IU ml−1 each). The partially purified xylanase and pectinase were optimally active at 60°C. Both enzymes were 100% stable at 50°C for more than 24 h. The half-lives of xylanase and pectinase at 70, 75 and 80°C were 90, 75 and 9 min, and 90, 53 and 7 min, respectively. The optimum pH values for xylanase and pectinase were 8.6 and 3.0, respectively, at 60°C. Xylanase and pectinase were stable over a broad pH range between 5.4 and 9.4 and 2.0 to 9.0, respectively, retaining more than 85% of their activity. Ca2+ stimulated the activity of both enzymes up to 7%, whereas Cd2+, Co2+, Cr3+, iodoacetic acid and iodoacetamide inhibited xylanase up to 35% and pectinase up to 63%; at 1 mM, Hg2+ inhibited both enzymes completely. Journal of Industrial Microbiology & Biotechnology (2000) 24, 396–402. Received 29 September 1999/ Accepted in revised form 02 February 2000  相似文献   

7.
 The influence of several parameters on the fermentative production of nisin Z by Lactococcus lactis IO-1 was studied. Considerable attention has been focused on the relationship between the primary metabolite production of bacteriocin and lactate and cell growth, which has so far not been clarified in detail. Production of nisin Z was optimal at 30°C and in the pH range 5.0–5.5. The addition of Ca2+ to the medium showed a stimulating effect on the production of nisin Z. A maximum activity of 3150 IU/ml was obtained during pH-controlled batch fermentation in the medium supplemented with 0.1 M CaCl2. It was about three times higher than that obtained under the optimal conditions for cell growth and lactic acid production. Received: 12 July 1995/Received revision: 11 September 1995/Accepted: 4 October 1995  相似文献   

8.
Summary A nisin-sensitive strain ofPediococcus sp possessed an uptake system for K+ which was apparently dependent on metabolic energy and ATPase activity. K+ uptake rate was dependent on the glucose and K+ concentrations and showed approximately Michaelis-Menten kinetics with respect to both of these variables with Kt values of 1.2 mM and 599 μM respectively. The presence of nisin inhibited K+ uptake with the percentage inhibition proportional to the nisin activity,. Total inhibition occurred at between 4.5 and 5.0 IU ml−1 and the MIC was approximately 0.6 IU ml−1.  相似文献   

9.
Lv W  Cong W  Cai Z 《Biotechnology letters》2004,26(22):1713-1716
Nisin production by Lactococcus lactis subsp. lactisin fed-batch culture was doubled by using a pH feed-back controlled method. Sucrose concentration was controlled at 10 g l–1 giving 5010 IU nisin ml–1 compared to 2660 IU nisin ml–1 in batch culture.  相似文献   

10.
Production of extracellular xylanase from Bacillus sp. GRE7 using a bench-top bioreactor and solid-state fermentation (SSF) was attempted. SSF using wheat bran as substrate and submerged cultivation using oat-spelt xylan as substrate resulted in an enzyme productivity of 3,950 IU g−1 bran and 180 IU ml−1, respectively. The purified enzyme had an apparent molecular weight of 42 kDa and showed optimum activity at 70°C and pH 7. The enzyme was stable at 60–80°C at pH 7 and pH 5–11 at 37°C. Metal ions Mn2+ and Co2+ increased activity by twofold, while Cu2+ and Fe2+ reduced activity by fivefold as compared to the control. At 60°C and pH 6, the K m for oat-spelt xylan was 2.23 mg ml−1 and V max was 296.8 IU mg−1 protein. In the enzymatic prebleaching of eucalyptus Kraft pulp, the release of chromophores, formation of reducing sugars and brightness was higher while the Kappa number was lower than the control with increased enzyme dosage at 30% reduction of the original chlorine dioxide usage. The thermostability, alkali-tolerance, negligible presence of cellulolytic activity, ability to improve brightness and capacity to reduce chlorine dioxide usage demonstrates the high potential of the enzyme for application in the biobleaching of Kraft pulp.  相似文献   

11.
The high-cell-density fermentation of Candida rugosa lipase in the constitutive Pichia pastoris expression system was scaled up from 5 to 800 l in series by optimizing the fermentation conditions at both lab scale and pilot scale. The exponential feeding combined with pH-stat strategy succeeded in small scale studies, while a two-stage fermentation strategy, which shifted at 48 h by fine tuning the culture temperature and pH, was assessed effective in pilot-scale fermentation. The two-stage strategy made an excellent balance between the expression of heterogeneous protein and the growth of host cells, controlling the fermentation at a relatively low cell growth rate for the constitutive yeast expression system to accumulate high-level product. A stable lipase activity of approximately 14,000 IU ml−1 and a cell wet weight of ca. 500 g l−1 at the 800-l scale were obtained. The efficient and convenient techniques suggested in this study might facilitate further scale-up for industrial lipase production.  相似文献   

12.
An online removal of nisin by silicic acid coupled with a micro-filter module was proposed as an alternative to reduce detrimental effects caused by adsorption of nisin onto producer, enzymatic degradation by protease, and product inhibition during fermentation. In this study, silicic acid was successfully used to recover nisin from the fermentation broth of Lactococcus lactis subsp. lactis NIZO 22186. The effect of pH (at 6.8 and 3.0) during adsorption process and several eluents (deionized water, 20% ethanol, 1 M NaCl, and 1 M NaCl + 20% ethanol) for desorption were evaluated in a small batch scale. Higher nisin adsorption onto silicic acid was achieved when the adsorption was carried out at pH 6.8 (67% adsorption) than at pH 3.0 (54% adsorption). The maximum recovery was achieved (47% of nisin was harvested) when the adsorption was carried out at pH 6.8 and 1 M NaCl + 20% ethanol was used as an eluent for desorption. Most importantly, nisin production was significantly enhanced (7,445 IU/ml) when compared with the batch fermentation without the online recovery (1,897 IU/ml). This may possibly be attributed to preventing the loss of nisin due the detrimental effects and a higher biomass density achieved during online recovery process, which stimulated production of nisin during fermentation.  相似文献   

13.
A recombinant human consensus interferon-α mutant (cIFN) was expressed in Pichia pastoris. The maximum dry cell weight, cIFN concentration and antiviral activity were 160 g l−1, 1.24 g l−1 and 4.1 × 107 IU ml−1, respec tively. The cIFN secreted into the medium was in the form of aggregates dominantly by non-covalent interaction and partially by disulphide bond. When the fermentation supernatant was disaggregated with 6 M guanidine hydrochloride, the antiviral activity of cIFN achieved 2.2 × 108 IU ml−1.  相似文献   

14.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

15.
To relieve lactic acid inhibition, an aqueous two-phase system (ATPS) was used to grow Lactococcus lactis. Its composition was 11% (w/v) PEG 20000/3.5% (w/v) MgSO4 7H2O. In this ATPS medium, the cells were completely partitioned in the bottom phase, and lactic acid had the biggest partition coefficient of the eight ATPS media tested. The cell biomass in this medium was 0.64 mg ml–1, only 60% of that of the control medium, but nisin production (803 IU ml–1) was enhanced by 33%. The increase in nisin was explained as a result of extraction of lactic acid from the bottom phase to the top one. The changes of tie-line length and phase volume ratio for the identical tie line could affect cell growth and nisin accumulation.  相似文献   

16.
We sought an optimal pH profile to maximize curdlan production in a batch fermentation of Agrobacterium species. The optimal pH profile was calculated using a gradient iteration algorithm based on the minimum principle of Pontryagin. The model equations describing cell growth and curdlan production were developed as functions of pH, sucrose concentration, and ammonium concentration, since the specific rates of cell growth and curdlan production were highly influenced by those parameters. The pH profile provided the strategy to shift the culture pH from the optimal growth condition (pH 7.0) to the optimal production one (pH 5.5) at the time of ammonium exhaustion. By applying the optimal pH profile in the batch process, we obtained significant improvement in curdlan production (64 g L−1) compared to that of constant pH operation (36 g L−1). Received 24 November 1998/ Accepted in revised form 17 June 1999  相似文献   

17.
The in vitro cytotoxicity of the antimicrobial peptide P40 was investigated. The food grade bacteriocin nisin was also analyzed for comparison. VERO cells were treated with different concentrations (0.02–2.5 μg ml−1) of nisin and P40, and cell viability and plasma membrane integrity were checked by MTT, neutral red uptake (NRU), and lactate dehydrogenase (LDH) assays. In MTT and NRU assays the EC50 to the purified peptide P40 were 0.30 and 0.51 μg ml−1, while values found to nisin were 0.35 and 0.79 μg ml−1, respectively. In the LDH assay, the EC50 was 0.57 and 0.62 μg ml−1 for P40 and nisin, respectively. The peptide P40 revealed higher hemolytical activity (19%) when compared to nisin (4.9%) at the highest concentration tested (2.5 μg ml−1). Relatively few studies about the cytotoxicity of antimicrobial peptides are available. The determination of the cytotoxicity of antimicrobial peptides is an essential step to warrant their safe use.  相似文献   

18.
The effect of rapid and slow chilling on survival and nisin sensitivity was investigated in Escherichia coli. Membrane permeabilization induced by cold shock was assessed by uptake of the fluorescent dye 1-N-phenylnapthylamine. Slow chilling (2°C min−1) did not induce transient susceptibility to nisin. Combining rapid chilling (2,000°C min−1) and nisin causes a dose-dependent reduction in the population of cells in both exponential and stationary growth phases. A reduction of 6 log of exponentially growing cells was achieved with rapid chilling in the presence of 100 IU ml−1 nisin. Cells were more sensitive if nisin was present during stress. Nevertheless, addition of nisin to cell suspension after the rapid chilling produced up to 5 log of cell inactivation for exponentially growing cells and 1 log for stationary growing cells. This suggests that the rapid chilling strongly damaged the cell membrane by disrupting the outer membrane barrier, allowing the sensitization of E. coli to nisin post-rapid chilling. Measurements of membrane permeabilization showed a good correlation between the membrane alteration and nisin sensitivity. Application involving the simultaneous treatment with nisin and rapid cold shock could thus be of value in controlling Gram negatives, enhancing microbiological safety and stability.  相似文献   

19.
Staphylococcus xylosus MAK2, Gram-positive coccus, a nonpathogenic member of the coagulase-negative Staphylococcus family was isolated from soil and used to produce naringinase in a stirred tank reactor. An initial medium at pH 5.5 and a cultivation temperature of 30°C was found to be optimal for enzyme production. The addition of Ca+2 caused stimulation of enzyme activity. The effect of various physico-chemical parameters, such as pH, temperature, agitation, and inducer concentration was studied. The enzyme production was enhanced by the addition of citrus peel powder (CPP) in the optimized medium. A twofold increase in naringinase production was achieved using different technological combinations. The process optimization using technological combinations allowed rapid optimization of large number of variables, which significantly improved enzyme production in a 5-l reactor in 34 h. An increase in sugar concentration (15 g l−1) in the fermentation medium further increased naringinase production (8.9 IU ml−1) in the bioreactor. Thus, availability of naringinase renders it attractive for potential biotechnological applications in citrus processing industry.  相似文献   

20.
Summary The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSO3 l−1, 6 g lactic acid l−1, 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号