首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is reported for determination of allantoin in urine and plasma based on high-performance liquid chromatography (HPLC) and pre-column derivatization. In the derivatization procedure, allantoin is converted to glyoxylic acid which forms a hydrazone with 2,4-dinitrophenylhydrazine. The hydrazone appears as syn and anti isomers at a constant ratio. These derivatives are separated by HPLC using a reversed-phase C18 column from hydrazones of other keto acids possibly present in urine and plasma and then monitored at 360 nm. All components were completely resolved in 15 min. Both the reagents and derivatization products are stable. Recovery of allantoin added to urine and plasma was 95 ± 3.7% (n = 45) and 100 ± 7.5% (n = 64), respectively. The lowest allantoin concentration that gave a reproducible integration was 5 μmol/l. The between-assay and within-day coefficients of variation were 2.8 and 0.6%, respectively.  相似文献   

2.
A new HPLC assay using UV detection (200 nm) was developed to determine ethambutol (EMB) concentrations in plasma. Following extraction (0.1 ml plasma) with chloroform, EMB and octylamine (used as internal standard) were derivatized with phenylethylisocyanate. Quantitation in plasma was achieved at 200 nm. There were no interferences from endogenous compounds. Intra- and inter-day variabilities were lower than 5.2 and 7.6%, respectively. The limit of quantitation of the method was 0.2 μg/ml. In plasma, ethambutol was found to be stable for at least one month when samples were stored at −20°C. This assay was applied to the therapeutic monitoring of EMB concentrations in 19 patients suffering from tuberculosis.  相似文献   

3.
A simple, selective, and sensitive liquid chromatographic method with ultraviolet detection was developed for the analysis of penicillin G in bovine plasma. The assay utilizes a simple extraction of penicillin G from plasma (with a known amount of penicillin V added as internal standard) with water, dilute sulphuric acid and sodium tungstate solutions, followed by concentration on a conditioned C18 solid-phase extraction column. After elution with 500 μl of elution solution, the penicillins are derivatized with 500 μl of 1,2,4-triazole—mercuric chloride solution at 65°C for 30 min. The penicillin—mercury mercaptide complexes are separated by reversed-phase liquid chromatography on a C18 column. The method, which has a detection limit of 5 ng/ml (ppb) in bovine plasma, was used to quantitatively measure the concentrations of penicillin G in plasma of steers at a series of intervals after the intramuscular administration of a commercial formulation of procaine penicillin G.  相似文献   

4.
A reliable and semi-automated high-performance liquid chromatographic (HPLC) method is described for the determination of total vitamin C in whole blood. After deproteinization of whole blood and enzymatic oxidation of l-ascorbic acid to dehydro-l-ascorbic acid, the latter is condensed with o-phenylenediamine to its quinoxaline derivative. This derivative is separated on a reversed-phase HPLC column and detected fluorometrically. Total vitamin C in whole blood can be determined in concentrations as low as 0.2 μmol/l.Special attention was paid to the stability of vitamin C in whole blood and of its quinoxaline derivative in the extract. Results of our investigations showed that total vitamin C in whole blood is stable for eight days at −20°C, provided ethyleneglycol-bis-(β-amino-ethyl ether)-N,N,N′,N′-tetraacetic acid and glutathione are immediately added to the blood sample. The quinoxaline derivative of vitamin C in the blood extract is stable for at least 24 h if stored in the dark at 4°C.Routine vitamin C determinations can be carried out in a series of 100 samples within 48 h. The within-assay and between-assay coefficients of variation were 3.7% and 4.6%, respectively. The between-assay analytical recovery of l-ascorbic acid added to whole blood samples was 97.0 ± 7.0% (mean ± S.D.). Reference values of vitamin C in whole blood of normal healthy Dutch adults were found in the range 20–80 μmol/l.  相似文献   

5.
A sensitive and reproducible fully automated method for the determination of amino acids in plasma based on reversed-phase high-performance liquid chromatography and o-phthaldialdehyde pre-column derivatization is described. A 5-μm Spherisorb ODS 2 column (125 × 3 mm I.D.) was selected for routine determination. Over 40 physiological amino acids could be determined within 49 min (injection to injection) and 48 samples could be processed unattended. The coefficients of variation for most amino acids in plasma were below 4%. We were also able to measure trace amounts of amino acids in plasma normally not detected in a routine analysis. The results obtained with the method described compared favourably with those of conventional amino acid analysis (r = 0.997) and were in excellent agreement with those of other laboratories (r = 0.999).  相似文献   

6.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

7.
A rapid, sensitive and reproducible high-performance liquid chromatographic assay for busulfan in human plasma was developed. After extraction of plasma samples with acetonitrile and methylene chloride, busulfan and the internal standard [1,5-bis(methanesulfonyloxy)pentane] were derivatized with 8-mercaptoquinoline to yield fluorescent compounds which were detected with a fluorescence detector equipped with filters of 360 nm (excitation) and 425 nm (emission). Calibration graphs showed a linear correlation (r>0.9990) over the concentration range of 20–2000 ng/ml. The recovery of busulfan from plasma standards was 70±5%. The detection and quantification limits for busulfan in plasma samples were established at 9 ng/ml and 20 ng/ml, respectively. The intra- and inter-assay variations were lower than 8% and 10%, respectively. The applicability of the method was verified by analyzing the plasma concentrations of busulfan in a patient to whom it was administered orally on two different days.  相似文献   

8.
A stereoselective reversed-phase HPLC assay to quantify S-(−) and R-(+) enantiomers of propranolol and 4-hydroxypropranolol in human plasma was developed. The method involved liquid–liquid extraction for sample clean-up and employed 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The internal standard used was 4-methylpropranolol. The derivatized products were separated on an Altex C18 column using a mixture of acetonitrile–water–phosphoric acid–triethylamine (58:42:0.1:0.06 and 50:50:0.15:0.06, v/v, for propranolol and 4-hydroxypropranolol, respectively) as mobile phase. The detection of propranolol derivatives was made at λex=280 nm and λem=325 nm, and the corresponding 325 and 400 nm were used for 4-hydroxypropranolol derivatives. The assay was linear from 1 to 100 ng/ml and from 2 to 50 ng/ml using 0.5 ml of human plasma for propranolol and 4-hydroxypropranolol enantiomers, respectively. The present assay is used to quantify the enantiomers of propranolol and 4-hydroxypropranolol, respectively, in human plasma for pharmacokinetic studies.  相似文献   

9.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

10.
A new sensitive high-performance liquid chromatographic procedure for the determination of l-carnitine (LC), acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC) in human plasma has been developed. Precolumn derivatization with 1-aminoanthracene (1AA), performed in phosphate buffer in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as catalyst, is involved. The fluorescent derivatives were isocratically separated on a reversed-phase column (C18). The eluate was monitored with a fluorimetric detector set at 248 nm (excitation wavelength) and 418 nm (emission wavelength). Because of the presence of endogenous carnitines, the validation was performed using dialyzed plasma. The identity of the derivatized compounds was assessed by mass spectrometry and the purity of the chromatographic peaks was confirmed by HPLC-tandem mass spectrometry. The limits of quantitation were 5 nmol/ml for LC, 1 nmol/ml for ALC and 0.25 nmol/ml for PLC. The recovery of the extraction procedure was in the range 82.6%–95.4% for all 3 compounds. Good linearity (R≈0.99) was observed within the calibration ranges studied: 5–160 nmol/ml for LC, 1–32 nmol/ml for ALC and 0.25–8 nmol/ml for PLC. Precision was in the range 0.3–16.8% and accuracy was always lower than 10.6%.  相似文献   

11.
An amino acid analysis by reversed-phase high-performance liquid chromatography after precolumn derivatization with phenyl isothiocyanate was adapted to the determination of free amino acids in plasma or other biological fluids and in tissue homogenates. Preparation of samples included deproteinization by 3% sulphosalicylic acid, and careful removal under high vacuum of residual phenyl isothiocyanate after derivatization. A Waters Pico-Tag column (15 cm long) was used, immersed in a water-bath at 38°C. In rat or human plasma, separation of 23 individual amino acids, plus the unresolved pair tryptophan and ornithine, was obtained within 13 min. Including the time for column washing and re-equilibration, samples could be chromatographed at 23-min intervals. Variability was tested for each amino acid by calculating the coefficients of variation of retention times (less than 1% in the average) and peak areas (less than 4% for both intra-day and inter-day determinations). The linearity for each standard amino acid was remarkable over the concentration range 3–50 nmol/ml. The mean recovery of amino acid standards added to plasma prior to derivatization was 97 ± 0.8%, except for aspartate (82%) and glutamate (81%). This method is rapid (almost three samples per hour can be analysed, more than in any other reported technique), with satisfactory precision, sensitivity and reproducibility. Therefore, it is well suited for routine analysis of free amino acids in both clinical and research work.  相似文献   

12.
By measuring the potential glucose precursors entering and exiting the liver, an estimate of the maximal rate of de novo gluconeogenesis can be made. Tradiotionally, measurements of gluconeogenic amino acids have been extracted from full amino acid profiles using conventional ion-exchange chromatography. These methods are labor intensive, costly procedures that do not focus on gluconeogenic amino acids. The present paper describes a method that provides an accurate whole blood gluconeogenic amino acid profile (intra-assay coefficients of variation from 0.8 to 1.1% and inter-assay coefficients of variation from 2.9 to 4.3%) using high-performance liquid chromatography with o-phthalaldehyde chemistry. This automated method is relatively fast (injection to injection time = 30 min), and linear (r2>0.996) for both standards and deproteinized whole blood. Furthermore, it is economical and capable of assessing gluconeogenic amino acids across a broad physiological range of concentrations using small sample volumes.  相似文献   

13.
A sensitive and selective reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of polyoxyethyleneglycerol triricinoleate 35 (Cremophor EL; CrEL), which requires only microvolumes (20 μl) of plasma, has been developed and validated. The procedure is based on saponification of CrEL in alcoholic KOH, followed by extraction of the released fatty acid ricinoleic acid with chloroform and derivatization with 1-naphthylamine. Margaric acid was used as the internal standard. The products are separated using an HPLC system consisting of an analytical column packed with Spherisorb ODS-1 material and a mobile phase of methanol-acetonitrile-10 mM potassium phosphate buffer pH 7.0 (72:13:15, v/v). Detection was executed by UV absorption at 280 nm. The lower limit of quantitation and the lower limit of detection in plasma are 0.01 and 0.005% (v/v) of CrEL, respectively. The percentage deviation and precision of the procedure, over the validated concentration range of 0.01 to 1.0% (v/v) of CrEL in plasma, are ≤8.0% and ≤ 6.6%, respectively. Compared to the previously described bioassay, the presented HPLC method possesses superior sensitivity and reliability. Preliminary pharmacokinetic studies of CrEL in mice and patients receiving paclitaxel formulated in CrEL have demonstrated the applicability of the presented assay.  相似文献   

14.
Branched-chain ketoacids were isolated from plasma or serum samples by acidification, passage through a cationic exchange resin, ether extraction, and extraction of the ether layer with phosphate buffer. The recovery of 2-[1-14C]ketoisocaproate taken through these procedures averaged 95 +/- 3%. Branched-chain ketoacids were measured by high-performance liquid chromatography using a single mobile phase (sodium phosphate:acetonitrile). In normal human subjects, mean +/- SD fasting levels of 2-ketoisocaproate, 2-keto-3-methylvalerate, and 2-ketoisovalerate were 29 +/- 8, 18 +/- 4, and 12 +/- 3 microM, respectively. In normal rats, slightly different results were found: 24 +/- 10, 19 +/- 7 and 17 +/- 6 microM, respectively. In both species, levels of each ketoacid expressed as fractions of total branched-chain ketoacids were much less variable.  相似文献   

15.
Methods for the quantitative derivatization of amino acids with phenylisothiocyanate and for the separation and quantitation of the resulting phenylthiocarbamyl derivatives by reverse-phase high-performance liquid chromatography are described. Phenylthiocarbamylation of amino acids proceeds smoothly in 5 to 10 min at room temperature. Coupling solvents, reagent, and some byproducts are removed by rotary evaporation under high vacuum, and the phenylthiocarbamyl derivatives are dissolved in 0.05 M ammonium acetate, pH 6.8, for injection onto the octyl or octadecylsilyl reverse-phase column. Columns are equilibrated with the same solvent and the effluent stream is monitored continuously at 254 nm for detection of the amino acid derivatives. Elution of all of the phenylthiocarbamyl amino acids is achieved in about 30 min utilizing gradients of increasing concentrations of ammonium acetate and acetonitrile or methanol. This approach to amino acid analysis offers select advantages, both with respect to methods which employ reverse-phase separation of prederivatized samples and to the classical ion-exchange procedure. All amino acids, including proline, are converted quantitatively to phenylthiocarbamyl compounds and these are stable enough to eliminate any need for in-line derivatization. Furthermore, results comparable in sensitivity and precision to those obtained by state-of-the-art ion-exchange analyzers may be generated with equipment that need not be dedicated to a single application.  相似文献   

16.
Carvedilol is a beta/alpha1-adrenoceptor blocker. A sensitive method for measuring plasma levels of carvedilol in human administrated low doses is needed since its plasma concentration is low. We measured carvedilol and carvedilol M21-aglycon using high-performance liquid chromatography (HPLC) with electrochemical detection. The amperometric detector was operated at 930 mV versus Ag/AgCl. Mean coefficients of variation (n = 5) for carvedilol and M21-aglycon were 4.0 and 7.7% (intra) and 6.1 and 6.7% (inter), respectively. The lower limit of quantification for each analyte was 0.10 ng/ml (signal-to-noise ratio = 3). This lower limit of quantification for carvedilol was sufficient for clinical use.  相似文献   

17.
A sensitive chromatographic assay has been developed for m-iodobenzylguanidine (MIBG) in human plasma based on the derivatization with benzoin. MIBG is first isolated from plasma using solid-phase extraction on a cyanopropyl-modified silica phase. After evaporation of the eluate, a fluorescent derivative is formed using benzoin. The derivative is analysed by reversed-phase liquid chromatography using a mixture 60% (v/v) acetonitrile, 30% (v/v) water and 10% (v/v) of the 0.5 M Tris buffer (pH 8.0) as the eluent and fluorescence detection at 320 nm for excitation and 435 nm for emission, respectively. In the evaluated concentration range (2–200 ng/ml) precisions 10% and accuracies in between 90 and 100% have been found, with 2 ng/ml being the lower limit of quantification using a 0.5-ml plasma sample volume. The assay can also be used without the internal standard benzylguanidine. The assay was successfully used to obtain a pharmacokinetic curve of MIBG.  相似文献   

18.
19.
A new method was developed to analyze three cardiovascular drugs in rat plasma, Mexiletine hydrochloride (MXL), Methoxamine hydrochloride (MTX), and Metaraminol bitartrate (MTR), by high-performance liquid chromatography (HPLC) using 9,10-anthraquinone-2-sulfonyl chloride (ASC) as the derivatization reagent. The derivatization modes and conditions for this method were optimized. The quantitative analysis was achieved using a C18 column at room temperature (25 degrees C), with various volume ratios of methanol-water as the mobile phase and a detection wavelength at 256 nm. Analytical linearity was obtained for the method over the concentration range of 0.04-8.0 microg mL(-1) for all the three drugs. The lower limit of quantification (LLOQ) was 0.04 microg mL(-1). This method was successfully applied to the analysis of the three drugs in rat plasma and their pharmacokinetic studies. The t1/2 values of the three drugs in rats were found to be 5.38+/-0.61, 4.49+/-0.53, and 3.70+/-0.19 h for MXL, MTX, and MTR, respectively.  相似文献   

20.
A simple and rapid high performance liquid chromatographic technique is described for the separation and quantitation of plasma branched chain amino acids. After addition of a norleucine internal standard, plasma samples are acidified with acetic acid, and amino acids are separated from proteins and other plasma components by passage of the acidified plasma through an ion exchange resin. The ammonium hydroxide eluate from the resin is dried, phenylisothiocyanate derivatives are prepared, and the amino acids are separated on a Waters reverse-phase "Pico-Tag" column with an ultraviolet detector set at 254 nm. In addition to the branched chain amino acids (leucine, valine, and isoleucine), aspartate, glutamate, serine, threonine, alanine, and methionine are quantitated with high precision and accuracy, as verified by quantitative recovery and comparison with an automatic amino acid analyzer. The advantages of the method are its simplicity, speed, stability of derivatives, high reproducibility, low per-sample cost, and the use of a simple fixed-wavelength ultraviolet detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号