首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
There are numerous chemical methods published that enable protein coupling to carboxymethyl (CM) dextran. Here we have taken traditional amine coupling using N-hydroxysuccinimide (NHS) and N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and coupled an antibody fragment (scFv) to CM dextran at a very high density. Using an upgraded BIAlite from Biacore AB, more than 7000 RU of scFv was coupled to a CM dextran biosensor chip. In addition, scanning electron microscopy was performed on CM dextran biosensor chips following amine coupling of 30 nm gold anti-IgG particles. This showed that amine coupling was uniform across the biosensor chip surface. Calculations show that 7620 RU of an scFv coupled to such a surface results in a mean distance between binding sites of 8.8 nm. This equates to a packing volume of approximately 20% of the available space occupied by the antibody fragment. Comparisons made with densities of covalently coupled IgG show that a greater number of antibody fragment molecules can be coupled per unit area. This is most likely due to the smaller size of an antibody fragment (scFv), which has a volume of less than 20% of an IgG molecule. The significance of these findings is discussed.  相似文献   

2.
Bovine beta-lactoglobulin (beta-lg) has been used extensively as a model for studying protein folding. One of the problems preventing clarification of the folding mechanism is the incomplete reversibility from the unfolded state, probably caused by the thiol-disulfide exchange between a free thiol at Cys-121 and two disulfide bonds. We constructed and expressed three beta-lg subtype A mutants in which Cys-121 was replaced by Ala, Ser, or Val (i.e. C121A, C121S, and C121V). We studied the reversibilities of these mutants from urea denaturation using circular dichroism, tryptophan fluorescence, reversed-phase and gel-filtration high performance liquid chromatographies, and SDS-PAGE. The folded structure of each mutant was similar to that of wild-type beta-lg. Urea-induced unfolding at pH 7.0 and 3.0 showed that although the C121S mutation notably decreases the stability, the destabilizing effects of the C121A and C121V mutations are less severe. For all of the mutants, complete refolding from the unfolded state in 8 M urea at both pH 7.0 and 3.0 was observed. Kinetics of the formation of the irreversibly unfolded species of wild-type beta-lg in 8 M urea at pH 7.0 indicated that, first, an intramolecular thiol-disulfide exchange occurs to produce a mixture of species with non-native disulfide bonds followed by the intermolecular thiol-disulfide exchange producing the oligomers. These results indicate that intramolecular and intermolecular thiol-disulfide exchange reactions cause the low reversibility of wild-type beta-lg especially at neutral pH and that the mutation of Cys-121 improves the reversibility, enabling us to study the folding of beta-lg more exactly under various conditions.  相似文献   

3.
1 alpha-beta-carboxypropionyl-cyclo(9----1 epsilon)-[Lys1, Gly6]bradykinin (Suc-c[Lys1, Gly6]B), 1 alpha-beta-carboxypropionyl-cyclo(10----1 epsilon)kallidin (Suc-cK), cyclo(10 gamma----1 epsilon)-[Glu10]kallidin (c[Glu10]K) and cyclo(11 gamma----1 epsilon)kallidylglutamic acid (cKG) were synthesized. Suc-c[Lys1, Gly6]B and Suc-cK were prepared by acylating the appropriate cyclopeptides with succinic anhydride. c[Glu10]K and cKG were obtained by the classic peptide synthesis, the cyclization being carried out with 61 and 42% yields, respectively. The protecting groups were then eliminated by catalytic hydrogenation. c[Glu10]K and cKG exerted myotropic action on isolated rat uterus (alpha 0.73 and 0.89, pD2 6.61 and 8.61, respectively). cKG displayed direct myotropic activity with respect to electrically stimulated rat vas deferens and guinea-pig ileum, potentiating the contractions (by 100%) in response to electric stimuli. c[Glu10]K and cKG elicit histamine release in isolated rat mast cells (EC30 4.91.10(-5) and 1.47.10(-6) M, respectively). Both cyclopeptides alter arterial pressure following intravenous administration to anaesthetized rats, cats and dogs and affect heart rate. In all assays cKG is more active than c[Glu10]K. Suc-c[Lys1, Gly6]B and Suc-cK do not possess myotropic, histamine-releasing or hypotensive activity, though they were found to elicit a transient increase of bloodflow in cats and dogs.  相似文献   

4.
A biosensor chip utilizing surface plasmon resonance (SPR) was fabricated for detecting anti-glutamic acid decarboxylase (GAD) antibody, which is an indicator of the presence of type I diabetes mellitus. The sensor surfaces were constructed from various thiol mixtures of different molar ratios of 3-mercaptopropionic acid (3-MPA) to 11-mercaptoundecanoic acid (11-MUA). To determine the surface characteristics of the different alkanethiol monolayers, several quantitative and kinetic measurements were carried out. The extent of immobilization of streptavidin (SA) and biotin-GAD (the anti-GAD receptor) and the immune response of anti-GAD antibody against GAD were measured using the SPR biosensor. The terminal functional group of a thiol has different effects on the adsorption and covalent binding of protein depending on the steric hindrance. The protein chip described herein permits simple, rapid detection of anti-GAD antibody.  相似文献   

5.
SAW devices based on horizontally polarized surface shear waves (HPSSW) enable label-free, sensitive and cost-effective detection of biomolecules in real time. It is known that small sampling volumes with low inner surface areas and minimal mechanical stress arising from sealing elements of miniaturized sampling chambers are important in this field. Here, we present a new approach to integrate SAW devices with sampling chamber. The sensor device is encapsulated within a polymer chip containing fluid channel and contact points for fluidic and electric connections. The chip volume is only 0.9 microl. The polymeric encapsulation was performed tailor-made by Rapid Micro Product Development 3Dimensional Chip-Size-Packaging (RMPD 3D-CSP), a 3D photopolymerisation process. The polymer housing serves as tight and durable package for HPSSW biosensors and allows the use of the complete chips as disposables. Preliminary experiments with these microfluidic chips are shown to characterise the performance for their future applications as generic bioanalytical micro devices.  相似文献   

6.
7.

Background  

The topoisomerase I (TopI) reaction intermediate consists of an enzyme covalently linked to a nicked DNA molecule, known as a TopI-DNA complex, that can be trapped by inhibitors and results in failure of re-ligation. Attempts at new derivative designs for TopI inhibition are enthusiastically being pursued, and TopI inhibitors were developed for a variety of applications. Surface plasmon resonance (SPR) was recently used in TopI-inhibition studies. However, most such immobilized small molecules or short-sequence nucleotides are used as ligands onto sensor chips, and TopI was used as the analyte that flowed through the sensor chip.  相似文献   

8.
9.
10.
Surface plasmon resonance (SPR) as a label-free biosensor technique has become an important tool in drug discovery campaigns during the last couple of years. For good assay performance, it is of high interest to verify the functional activity on the immobilization of the target protein on the chip. This study illustrates the verification of the catalytic activity of the drug target protein PqsD by monitoring substrate conversion as a decrease in SPR signal and product detection by ultra high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS(2)). This assay would be applicable to control surface activity of immobilized ligands.  相似文献   

11.
In this paper the development and feasibility of a novel detection system for a low molecular weight chemical, in which a peptide was utilized as a binding molecule, are described. Surface plasmon resonance (SPR) apparatus was used as a transducer. The porphyrin binding peptide, PSP2, was used as a model peptide ligand, while a porphyrin derivative, H2TMpyP, was used as a model low-molecular-weight chemical. PSP2 was covalently immobilized onto the SPR sensor chip and SPR measurement using the PSP2-immobilized chip for various concentrations of porphyrin was carried out. H2TMpyP was detectable in the range from 100 ng ml−1 to 10 μg ml−1 with a linear correlation and good precision and the PSP2-immobilized chip could be regenerated within 1 min after measurement in this system. From comparison of the detection manners of three porphyrin derivatives, the ability of a short peptide to discriminate between differences in molecular structure was demonstrated. Moreover, the self-assembled monolayer (SAM) of PSP2 was successfully prepared on the gold substrate and H2TMpyP could be detected using the PSP2-SAM chip.  相似文献   

12.
F G Walz 《Biochemistry》1977,16(21):4568-4571
Low-pH-induced difference spectra for ribonuclease T1, which were determined using a reference solution at pH 6, consisted of a shorter wavelength component from 270 to 285 nm that relfected an ionization having a pKa of 3.54 and a longer wavelength component above 285 nm that reflected an ionization having a pKa of 4.29. The temperature dependence of the pKa value for data at 300 nm is consistent with its representing the dissociation of a carboxyl group. In addition, the pKa determined at this wavelength significantly decreased at lower ionic strength. Similar experiments which were conducted using catalytically inactive gamma-carboxymethyl-Glu-58-ribonuclease T1 gave difference spectra having only the shorter wavelength component and were characterized by a single pKa of 3.53. It is concluded that the longer wavelength component of the difference spectra is due to the ionization of Glu-58. The pKa determined for this residue in the present study agrees with one found previously from kinetic studies which supports a role for Glu-58 in catalysis. Furthermore, the results suggest a model for the interaction of Glu-58 with histidine and tryptophan residues at the active site.  相似文献   

13.
14.
Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation.  相似文献   

15.
A biosensor based on mammalian metallothionein (MT) for the detection of metal ions was developed and characterized. MT was immobilized onto a carboxymethylated dextran matrix as a biosensor for the detection of metal ions by surface plasmon resonance (SPR). The optimal pH for the immobilization step was determined to be 4. The temperature for the analysis was also defined, and the highest interaction was observed at 30 degrees C. The MT sensor chip binds cadmium (Cd), zinc (Zn) or nickel (Ni), but not magnesium (Mg), manganese (Mn) and calcium (Ca). Calibration curves for the quantification of metal ions showed excellent linearity. The sensitivity for metal detection is at the micromolar level. The interaction between the metal ions and the sensor chip is influenced significantly by the presence of NaCl, Tween 20 and the pH of the reaction buffer. By decreasing the NaCl in the reaction buffer to 1 mM, the MT chip effectively differentiates cadmium from zinc and nickel. Kinetic parameters of the metal-MT interactions were also determined by using this chip. The binding affinity between the metal ions and the immobilized MT follows the order of cadmium > zinc > nickel, which is the same as that determined for MT in solution. Thus, the MT chip can be an effective biosensor for the detection and measurement of several metal ions.  相似文献   

16.
The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.  相似文献   

17.
The dextran matrix of a surface plasmon resonance (SPR) sensor chip modified with hydrophobic residues (BIAcore sensor chip L1) provides an ideal substrate for liposome adsorption. Liposomes of different lipid compositions are captured on the sensor chips by inserting these residues into the liposome membrane, thereby generating stable lipid surfaces. To gain a more detailed understanding of these surfaces, and to prove whether the liposomes stay on the matrix as single particles or form a continuous lipid layer by liposome fusion, we have investigated these materials, using atomic force microscopy (AFM) and fluorescence microscopy. Force measurements with AFM probes functionalized with bovine serum albumin (BSA) were employed to recognize liposome adsorption. Analysis of the maximal adhesive force and adhesion energy reveals a stronger interaction between BSA and the dextran matrix compared to the lipid-covered surfaces. Images generated using BSA-coated AFM tips indicated a complete and homogeneous coverage of the surface by phospholipid. Single liposomes could not be detected even at lower lipid concentrations, indicating that the liposomes fuse and form a lipid bilayer on the dextran matrix. Experiments with fluorescently labeled liposomes concurred with the AFM studies. Surfaces incubated with liposomes loaded with TRITC-labeled dextran showed no fluorescence, indicating a complete release of the encapsulated dye. In contrast, surfaces incubated with liposomes containing a fluorescently labeled lipid showed fluorescence.  相似文献   

18.
Hao D  Ohme-Takagi M  Yamasaki K 《FEBS letters》2003,540(1-3):151-156
A novel gap junction forming protein, mouse connexin-30.2 (Cx30.2) contains 278 amino acid residues, and is 79% identical to human Cx31.9 (GJA11). Northern analysis showed that Cx30.2 is ubiquitously expressed, most prominently in testis. Polyclonal antibodies against Cx30.2 detected a 30 kDa protein in cells overexpressing Cx30.2, and in mouse testis. Immunofluorescence showed that Cx30.2 was expressed in vascular smooth muscle, but also in cell types where Cx31.9 was not detected. These data demonstrate that Cx30.2 is a bona fide gene, and suggest that it is the orthologue of Cx31.9, but that it may have additional roles compared with Cx31.9.  相似文献   

19.
D C Crans  C M Simone 《Biochemistry》1991,30(27):6734-6741
The inhibitory effects of vanadium(V) were determined on the oxidation of glycerol 3-phosphate (G3P) catalyzed by glycerol-3-phosphate dehydrogenase (G3PDH), an enzyme with a thiol group in the active site. G3PDH from rabbit muscle was inhibited by vanadate, and the active inhibiting species were found to be the vanadate dimer and/or tetramer. The dimer was a sufficiently weak inhibitor at pH 7.4 with respect to G3P; the tetramer could account for all the observed inhibition. The tetramer was a competitive inhibitor with respect to G3P with a Ki of 0.12 mM. Both the dimer and tetramer were noncompetitive inhibitors at pH 7.4 with respect to NAD with Ki's of 0.36 mM and 0.67 mM. G3PDH inhibited by vanadate was reactivated when EDTA complexed the vanadate. The reactivation occurred even after extended periods of incubation of G3PDH and vanadate, suggesting that the inhibition is reversible despite the thiol group in the active site. Analogous reactivation is also observed with glyceraldehyde-3-phosphate dehydrogenase (Gly3PDH). Gly3PDH is an enzyme that previously had been reported to undergo redox chemistry with vanadate. The work described in this paper suggests vanadate will not necessarily undergo redox chemistry with enzymes containing thiol groups exposed on the surface of the protein.  相似文献   

20.
Proinsulin C-peptide was electroimmobilized to a quartz crystal microbalance sensor chip, localizing this low-pI peptide for covalent attachment to activated surface carboxyl groups. The resulting chip was used in a continuous flow biosensor to capture anti-C-peptide antibodies, which could subsequently be eluted in 5% formic acid between air bubbles for efficient recovery and mass spectrometric identification. The method is reproducible through repeated cycles, providing affinity purification of proteins under real-time monitoring of the binding and elution processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号