首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.  相似文献   

2.
The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.  相似文献   

3.
The cation-induced gelation of alginates and pectins with various metal ions has been monitored by circular dichroism (c.d.), using a controlled diffusion technique to prepare homogeneous gels in situ. Spectral changes observed with Ca2+ are closely similar to those previously reported for Ca2+-induced dimerisation of alginate poly-l-guluronate and pectin poly-d-galacturonate chain-sequences in solution, and the magnitude of the c.d. change on gel formation is directly related to the proportion of these structural types present. It therefore appears that gel formation does not introduce optical artefacts such as have been reported for particulate systems or biological membranes. Similar spectral changes are observed on gelation of pectin with Sr2+, Ba2+, Cd2+, Ni2+, or Pb2+, but with minor alterations in the wavelength of maximum c.d. change. These subtle differences are interpreted as reflecting variation in binding-site geometry to accommodate ions of different size. Differences in c.d. behaviour with Mg2+, Ca2+, and Sr2+ are far greater for alginate than for pectin, consistent with the greater selectivity of ion-binding. Gelation of both alginate and pectin with Cu2+ is accompanied by spectral changes that are opposite in sign to those observed with other divalent cations, and span a much wider range of wavelengths. This suggests a different and less-specific binding mechanism, consistent with the known lack of selectivity of Cu2+ for different polyuronates. However, for alginate, there is also evidence of some specific interchain chelation. A minor enhancement of alginate c.d. in the presence of K+ ions is attributed to a decrease in charge density of the polymer chain by bound cations, with consequent increase in segment-segment association in solution. The sign and magnitude of this effect confirm the selectivity of polyuronates for divalent cation.  相似文献   

4.
Studies have been undertaken on the binding of Mn2+ ions to two alginate samples of different mannuronate:guluronate ratios (M:G), a sample of low-ester amidated pectin and poly(acrylic acid) (PAA). The binding of Ca2+ ions has also been included for the latter for comparison. The binding curves showed an initial steep rise at low additions of Mn2+ or Ca2+ indicating that all of the ions were bound to the polymer chains with none remaining in solution. At higher additions, the binding curves showed a plateau region and the maximum amount bound, theta, was found to be 0.2, 0.2, 0.25, and 0.33 mol M(2+)/mol COO- for high M:G alginate, low M:G alginate, pectin, and PAA, respectively. The binding curves for Mn2+ and Ca2+ with PAA were superimposable. In all cases, theta was less than the stoichiometric equivalent and also less than predicted by Manning counterion condensation theory. The linear charge density, xi, for the polymers is 1.49, 1.55, 1.62, and 2.85, and it was found that at maximum binding the effective linear charge density, xi(effective), decreased to a value close to 1 in each case and not 0.5 as predicted from Manning's two-variable theory. The mobility of the PAA chains has been followed by electron spin resonance spectroscopy using nitroxide spin labels covalently attached to the polymer, and the gelation of the pectin and alginate samples has been monitored using small deformation oscillatory experiments. For PAA at maximum binding, it was noted that there was a loss of chain mobility and precipitation. For pectin and alginate, gelation occurred and the stoichiometric ratio for maximum binding corresponded to the stoichiometric ratio for the maximum in G'. Precipitation and gelation are attributed to the formation of polymer-metal complexes involving one or two carboxylate groups resulting in charge reversal or charge annihilation.  相似文献   

5.
The structures of guluronic-acid-rich alginate in the acid and calcium forms were investigated using fiber X-ray diffraction. Data recorded for alginate fibers in the acid form show a repeat along the chain axis of c = 0.87 nm, a value that is in agreement with the one measured by Atkins et al. (Biopolymers 1973, 12, 1865) and contradicts a repeat of 0.78 nm recently suggested by Li et al. (Biomacromolecules 2007, 8, 464). In the Ca2+ form, our observations indicate that the junction zone involves dimerization of polymer chains through Ca2+ coordination according to the egg-box model. For reasons that are not understood at present, coordination of the divalent cations reduces the ability for the lateral crystallographic packing of the dimers. A proposed model for the junction zone involves polymer chains packed on a hexagonal lattice with a lattice constant a = 0.66 nm. Random pairs of chains form dimers through coordination of Ca2+ cations. Further lateral interaction between dimers is mediated by disordered Na+ and Ca2+ cations, water molecules, and hydrogen bonding.  相似文献   

6.
Influence of Ca2+ cations on low pH-induced DNA structural transitions   总被引:2,自引:0,他引:2  
A confocal Raman microspectrometer was used to investigate the influence of Ca2+ cations on low pH-induced DNA structural changes. The effects of Ca2+ cations on the protonation mechanism of opening AT and changing the protonation of GC base pairs in DNA are discussed. Based on the observation that the midpoint of the transition of Watson-Crick GC base pairs to protonated GC base pairs lies at around pH 3 (analyzing the 681 cm(-1) line), measurements were carried out on calf thymus DNA at neutral pH and pH 3 in the presence of low and high concentrations of Ca2+ cations. Raman spectra show that low concentrations of Ca2+ cations partially protect DNA against protonation of cytosine (characteristic line at 1262 cm(-1)) and do not protect adenine (characteristic line at 1304 cm(-1)) and the N(7) of guanine (line at 1488 cm(-1)) against binding of H+. High Ca2+ concentrations can prevent protonation of cytosine and protonation of adenine (little disruption of AT pairs). Analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high salt was also found to protect the N(7) of guanine against protonation.  相似文献   

7.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

8.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

9.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

10.
The M/G ratio, dyad and triad frequencies in the sodium alginate chain, were determined from 13C-nmr spectra. The interactions of sodium alginate in solution with the univalent cations K+ ion and Na+ ion have been investigated by viscometry and membrane osmometry. The dependencies of intrinsic viscosity, Huggins constant, and second virial coefficient on ionic strength were observed, and the maximums in reduced viscosity were obtained in low KCl and NaCl concentrations, respectively. These show that the electroviscous effects play an important role in polyelectrolyte solution, and the effect of the Na+ ion on aqueous solution of sodium alginate is greater than the K+ ion. The experimental observations are interpreted in terms of ion-pair formation with carboxyl groups of mannuronate and isolated guluronate residues and cooperation “egg-box” binding between polyguluronate chain sequence. The difference of interaction between univalent cations and alginate chains in solution is attributed to the ability of their binding with the polyion, which depends on the properties of ions itself. © 1998 John Wiley & Sons, Inc. Biopoly 46: 395–402, 1998  相似文献   

11.
Cell matrix interactions play a critical role in hepatic development and regeneration after acute injury. These interactions are mediated by transmembrane receptors belonging mainly to the integrin family. We have tried to assess the role of divalent cations in mediating attachment of hepatocytes to matrix proteins like collagen IV (Col IV) and laminin (Ln). The three cations examined viz. Ca2+, Mg2+ and Mn2+ showed attachment promoting activity. Since alpha1beta1 integrin is a common receptor for col IV and LN in liver, the effect of cations in its binding to these matrix proteins was studied. Although cations in general enhanced the binding, different cations exhibited differential effect in promoting the binding for different ligands. Mg2+ ions were more effective in promoting the binding of alpha1beta1 integrin to col IV but Ca2+ proved to be more effective one for Ln. Kinetic analysis of binding in dot blot assays using different concentrations of cations showed that while Mg2+ was active at low concentrations Ca2+ and Mn2+ promoted the binding more at higher concentrations. Absence of competitive effect in binding studies showed that they bind at different sites on the receptor. Differential effects of cations in promoting the binding of alpha1beta1 integrin to Col IV and Ln suggest that changes in level of diffusible cations can modulate affinity of the common receptor alpha1beta1 integrin to its ligands and can influence adhesion of hepatic cells to different matrix proteins during hepatic development and regeneration.  相似文献   

12.
Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of this domain in complex with adenine revealed an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base-pairing interactions and identified five binding sites for hexahydrated Mg2+-ions. Furthermore, a role for Mg2+-ions in the ligand-induced folding of this RNA was suggested. Here, we describe the interaction of divalent cations with the RNA–adenine complex in solution as studied by high-resolution NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping and intermolecular nuclear Overhauser effects (NOEs) indicate the presence of at least three binding sites for divalent cations. Two of them are similar to those in the X-ray structure. The third site, which is important for the folding of this RNA, has not been observed previously. The ligand-free state of the RNA is conformationally heterogeneous and contains base-pairing patterns detrimental to ligand binding in the absence of Mg2+, but becomes partially pre-organized for ligand binding in the presence of Mg2+. Compared to the highly similar guanine-sensing riboswitch, the folding pathway for the adenine-sensing riboswitch aptamer domain is more complex and the influence of Mg2+ is more pronounced.  相似文献   

13.
Cadmium uptake by cells of renal origin   总被引:2,自引:0,他引:2  
We compared the ability of rat glomerular mesangial cells and LLC-PK1 cells to take up Cd2+ from solution. The former are smooth muscle-like cells of mesenchymal origin, the latter an established line of proximal tubular epithelium. Both cells, as well as primary glomerular epithelia, accumulated Cd2+ against a concentration gradient in a time-dependent manner. Uptake by mesangial cells obeyed a Michaelis model with an apparent Km of 19 microM and could be described by an initial rapid step of surface binding followed by rate-limiting internalization. In contrast, uptake by LLC-PK1 cells was non-saturable under accessible concentrations of Cd2+ and internalization was not a necessary consequence of association with the cell surface. In several other cell types, Cd2+ uptake has been shown to be inhibited by blockage of cell-surface sulfhydryl groups. In contrast, uptake by neither mesangial nor LLC-PK1 cells was depressed by N-ethylmaleimide, which actually enhanced the surface binding and to a lesser extent the uptake by the LLC-PK1 cell line. Neither depended on metabolic energy for uptake or utilized Ca2+ channels. The internalization process was temperature dependent and was obliterated at 2 degrees C. In mesangial cells, this allowed direct observation of the internalization event from a presaturated surface pool. The rate of this process was consistent with the Vmax calculated from the Michaelis model. Surface binding and uptake were decreased by binding of Cd2+ to serum proteins and albumin and were much less dependent on the presence of low molecular weight components of serum. Therefore, these cells may be especially sensitive to Cd2+ at concentrations encountered in vivo because of the low protein content of the plasma ultrafiltrate. Surface binding of Cd2+ to mesangial cells was suppressed by competing divalent ions following the order of the Irving-Williams series (Mn less than Co less than Ni less than Cu greater than Zn), although Zn2+ showed the greatest effect on internalization. In LLC-PK1 cells, Zn2+ and Cu2+ were both effective in decreasing Cd2+ uptake. We conclude that Cd2+ uptake by the tubular epithelial cells is rapid and independent of specific cell surface interactions, whereas uptake by rat mesangial cells follows binding to a specific surface ligand saturating at about 1.5 x 10(7) copies/cell. In both types of cells the uptake appears quite specific for Cd2+ and shows some cross-reactivity with other metal cations explicable by competitive ligand binding.  相似文献   

14.
Asexual yeast flocculation was studied using strong flocculents of Saccharomyces cerevisiae. The inhibitory effect of cations on flocculation is considered to be caused by competition between those cations and Ca2+ at the binding site of the Ca(2+)-requiring protein that is involved in flocculation. Inhibition of flocculation by various cations occurred in the following order: La3+, Sr2+, Ba2+, Mn2+, Al3+, and Na+. Cations such as Mg2+, Co2+, and K+ promoted flocculation. This promoting effect may be based on the reduction of electrostatic repulsive force between cells caused by binding of these cations anionic groups present on the cell surface. In flocculation induced by these cations, trace amounts of Ca2+ excreted on the cell surface may activate the corresponding protein. The ratio of Sr2+/Ca2+ below which cells flocculated varied among strains: for strains having the FLO5 gene, it was 400 to 500; for strains having the FLO1 gene, about 150; and for two alcohol yeast strains, 40 to 50. This suggests that there are several different types of cell surface proteins involved in flocculation in different yeast strains.  相似文献   

15.
A simple procedure is described for the extraction and purification of alginate from the inner stipes of the kelp Laminaria pallida. Alginate yield was about 10–15% of the dry mass, with a 70:30 mannuronic/ guluronic acid ratio. Analysis of the purified alginate revealed a low polyphenol content while proteins were below detection level. The purified alginate was highly viscous, with 10–15 mPa s and 281 mPa s for a 0.1% and 0.5% solution, respectively, indicating a very high molecular mass (larger than 250 kDa). Bead formation occurred in the presence of divalent cations, but also in the presence of artificial serum (FCSIII) without added divalent cations. The biocompatibility of the alginate was tested with the in vitro mice lymphocyte test as well as by implantation of Ba2+ cross-linked beads beneath the kidney capsule of BB/OK rats. There was no evidence for significant mitogenic activity or fibrotic reaction. Biocompatibility of the alginate was also demonstrated by the encapsulation of human chondrocytes into Ca2+ cross-linked alginate beads. Immobilized chondrocytes grew and remained functional (i.e. they produced collagen). Received: 14 June 1999 / Received revision: 6 September 1999 / Accepted: 10 September 1999  相似文献   

16.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

17.
A comparative study of Mg2+ and Ca2+ effects on the ability of rat skeletal muscle hexokinase isozyme II to bind mitochondrial membranes isolated from the same source was carried out. It was found that the binding ability of the enzyme increases in a similar way in the presence of equimolar amounts of both cations. The dependence of binding ability on cation concentration is hyperbolic, which points to the existence of specific and equivalent metal binding sites during hexokinase attachment to the membranes. Substitution of Ca2+ for Mg2+ does not influence the tightness of the enzyme binding to membranes, which can be evidenced from the type of dependence of the bound hexokinase solubilization degree on KCl concentration in the eluting buffer. The enzyme absorption mediated by various cations is accompanied by corresponding changes in its kinetic properties (V, Km for glucose, Ki for ADP). The role of bivalent cations in the formation of the specific hexokinase-membrane binding is discussed.  相似文献   

18.
We have investigated the binding of 3-[125I]iododizocilpine ([125I]iodo-MK-801) to the N-methyl-D-aspartate (NMDA) receptor in well-washed rat brain membranes. [125I]Iododizocipline binding was displaced by the following: dizocilpine greater than thienylphencyclidine greater than phencyclidine greater than ketamine. Binding of [125I]iododizocilpine was enhanced by glutamate, glycine, and spermidine, whose actions could be reversed by CGS-19755, 7-chlorokynurenate, and arcaine, respectively. [125I]Iododizocilpine binding was also enhanced by a number of divalent cations, including Ba2+, Ca2+, Mg2+, Mn2+, and Sr2+, and several monovalent cations, including Na+ and K+. These cations enhanced [125I]iododizocilpine binding by an action at the polyamine site. In addition, the inhibitory effects associated with high concentrations of these cations was markedly reduced compared to those found in previous studies with [3H]dizocilpine. Analysis of the ability of spermidine, Mg2+, and Sr2+ to alter the inhibition of [125I]iododizocilpine by arcaine gave pA2 values of 5.41, 4.47, and 4.93, corresponding to EC50 concentrations of 3.9, 34.7, and 12.0 microM, respectively, suggesting that physiological concentrations of Mg2+ may occupy the polyamine site. These results demonstrate that [125I]iododizocilpine is a useful probe for the NMDA receptor. Moreover, its high specific activity and relative insensitivity to the inhibitory actions of divalent cations should make [125I]iododizocilpine a valuable ligand for the study of NMDA receptors in intact cellular systems.  相似文献   

19.
Living cells may be immobilized by gel entrapment under very mild conditions. The ionotropic gelation of alginate with bivalent cations such as Ca2+, as well as photo-induced gelation of polyvinyl alcohol (PVA) bearing photosensitive stilbazolium (SbQ) groups, are procedures that are compatible with most bioactive materials. In the search for more stable and stronger alginate gel beads, experiments have been carried out to investigate mixed gels from alginate and PVA-SbQ. The swelling capacities, diffusion properties, and potential toxic effect of the binary gel beads have been evaluated. The gel beads of selected PVA-SbQ/alginate mixtures were applied successfully as carriers in a denitrification process with continuous feeding of unsterilized water medium. Under such conditions, the purely synthetic PVA-SbQ network is expected to have a longer lifespan than a natural biopolymer such as alginate.  相似文献   

20.
The interaction between pinacyanol chloride and sodium alginate or guluronate-rich alginate is found to effect profound changes in the visible absorbance and circular dichroism spectra. Two different types of aggregates are observed depending on the relative dye/alginate concentrations. With a dye/alginate ratio at 1:1, a complex is deduced based on an analysis of Job’s method and conductometric titrations. Another complex forms at 1:10 dye/alginate ratio and only in the presence of alginate or guluronate-rich alginate. The two aggregates are in dynamic equilibrium according to the presence of isosbestic points in the visible spectra. The effects of pH and divalent cations on the spectra are studied. The 1:10 complex is damaged by addition of hydrochloric acid and divalent cations; however, at low concentration of these agents the spectra indicate conversion of the complex into the 1:1 aggregate. Models for the two complexes are proposed taking into account the preference of guluronate binding sites for chelating ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号