首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Possible binding proteins of CP12 in a green alga, Chlamydomonas reinhardtii, were investigated. We covalently immobilized CP12 on a resin and then used it to trap CP12 partners. Thus, we found an association between CP12 and phosphoribulokinase (EC 2.7.1.19), glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase. Immunoprecipitation with purified CP12 antibodies supported these data. The dissociation constant between CP12 and fructose 1,6-bisphosphate (EC 4.1.2.13) aldolase was measured by surface plasmon resonance and is equal to 0.48 +/- 0.05 mum and thus corroborated an interaction between CP12 and aldolase. However, the association is even stronger between aldolase and the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex and the dissociation constant between them is equal to 55+/-5 nm. Moreover, owing to the fact that aldolase has been poorly studied in C. reinhardtii, we purified it and analyzed its kinetic properties. The enzyme displayed Michaelis-Menten kinetics with fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, with a catalytic constant equal to 35 +/- 1 s(-1) and 4 +/- 0.1 s(-1), respectively. The K(m) value for fructose 1,6-bisphosphate was equal to 0.16 +/- 0.02 mm and 0.046 +/- 0.005 mm for sedoheptulose 1,7-bisphosphate. The catalytic efficiency of aldolase was thus 219 +/- 31 s(-1).mm(-1) with fructose 1,6-bisphosphate and 87 +/- 9 s(-1).mm(-1) with sedoheptulose 1,7-bisphosphate. In the presence of the complex, this parameter for fructose 1,6-bisphosphate increased to 310 +/- 23 s(-1).mm(-1), whereas no change was observed with sedoheptulose 1,7-bisphosphate. The condensation reaction of aldolase to form fructose 1,6-bisphosphate was also investigated but no effect of CP12 or the complex on this reaction was observed.  相似文献   

2.
Lorentzen E  Siebers B  Hensel R  Pohl E 《Biochemistry》2005,44(11):4222-4229
The glycolytic enzyme fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Catalysis of Schiff base forming class I FBPA relies on a number of intermediates covalently bound to the catalytic lysine. Using active site mutants of FBPA I from Thermoproteus tenax, we have solved the crystal structures of the enzyme covalently bound to the carbinolamine of the substrate fructose 1,6-bisphosphate and noncovalently bound to the cyclic form of the substrate. The structures, determined at a resolution of 1.9 A and refined to crystallographic R factors of 0.148 and 0.149, respectively, represent the first view of any FBPA I in these two stages of the reaction pathway and allow detailed analysis of the roles of active site residues in catalysis. The active site geometry of the Tyr146Phe FBPA variant with the carbinolamine intermediate supports the notion that in the archaeal FBPA I Tyr146 is the proton donor catalyzing the conversion between the carbinolamine and Schiff base. Our structural analysis furthermore indicates that Glu187 is the proton donor in the eukaryotic FBPA I, whereas an aspartic acid, conserved in all FBPA I enzymes, is in a perfect position to be the general base facilitating carbon-carbon cleavage. The crystal structure of the Trp144Glu, Tyr146Phe double-mutant substrate complex represents the first example where the cyclic form of beta-fructose 1,6-bisphosphate is noncovalently bound to FBPA I. The structure thus allows for the first time the catalytic mechanism of ring opening to be unraveled.  相似文献   

3.
Compartmentalized ATP synthesis in skeletal muscle triads.   总被引:9,自引:0,他引:9  
Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads.  相似文献   

4.
The combination of binding and kinetic approaches is suggested to study (i) the mechanism of substrate-modulated dynamic enzyme associations; (ii) the specificity of enzyme interactions. The effect of complex formation between aldolase and glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) on aldolase catalysis was investigated under pseudo-first-order conditions. No change in kcat but a significant increase in KM of fructose 1,6-bisphosphate for aldolase was found when both enzymes were obtained from muscle. In contrast, kcat rather than KM changed if dehydrogenase was isolated from yeast. Next, the conversion of fructose 1-phosphate was not affected by interactions between enzyme couples isolated from muscle. The influence of fructose phosphates on the enzyme-complex formation was studied by means of covalently attached fluorescent probe. We found that the interaction ws not perturbed by the presence of fructose 1-phosphate; however, fructose 1,6-bisphosphate altered the dissociation constant of the enzyme complex. A molecular model for fructose 1,6-bisphosphate-modulated enzyme interaction has been evaluated which suggests that high levels of fructose bisphosphate would drive the formation of the 'channelling' complex between aldolase and glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

5.
I A Rose  J V Warms 《Biochemistry》1985,24(15):3952-3957
Minimum values for the content of covalent intermediates in the equilibria of muscle aldolase with its cleavable substrates have been determined by acid denaturation/precipitation. Ribulose 1,5-bisphosphate, a nonsubstrate that binds well to aldolase in the native state, does not form a covalent complex that is acid precipitable. The insoluble protein complexes with substrates fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, representing approximately 50% and approximately 60% of total bound substrate, are much more stable in acid and alkali than that with substrate 5-deoxyfructose 1,6-bisphosphate, suggesting that they have the form of protein-bound N-glycosides. Whether such complexes exist on the enzyme in the native state in addition to being formed subsequent to denaturation is unresolved. Both the acid-precipitable and nonprecipitable forms of fructose 1,6-bisphosphate are converted to triose phosphate products at the same rate, providing no kinetic evidence for a pool that is not on the main reaction path. Total fructose 1,6-bisphosphate liganded to enzyme returns to the free solution about 9 times for each net cleavage reaction. It is still not clear whether this is limited by the cleavage step or by release of glyceraldehyde phosphate.  相似文献   

6.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

7.
Fructose 1,6-bisphosphate aldolase catalyses the reversible condensation of glycerone-P and glyceraldehyde 3-phosphate into fructose 1,6-bisphosphate. A recent structure of the Escherichia coli Class II fructose 1,6-bisphosphate aldolase [Hall, D.R., Leonard, G.A., Reed, C.D., Watt, C.I., Berry, A. & Hunter, W.N. (1999) J. Mol. Biol. 287, 383-394] in the presence of the transition state analogue phosphoglycolohydroxamate delineated the roles of individual amino acids in binding glycerone-P and in the initial proton abstraction steps of the mechanism. The X-ray structure has now been used, together with sequence alignments, site-directed mutagenesis and steady-state enzyme kinetics to extend these studies to map important residues in the binding of glyceraldehyde 3-phosphate. From these studies three residues (Asn35, Ser61 and Lys325) have been identified as important in catalysis. We show that mutation of Ser61 to alanine increases the Km value for fructose 1, 6-bisphosphate 16-fold and product inhibition studies indicate that this effect is manifested most strongly in the glyceraldehyde 3-phosphate binding pocket of the active site, demonstrating that Ser61 is involved in binding glyceraldehyde 3-phosphate. In contrast a S61T mutant had no effect on catalysis emphasizing the importance of an hydroxyl group for this role. Mutation of Asn35 (N35A) resulted in an enzyme with only 1.5% of the activity of the wild-type enzyme and different partial reactions indicate that this residue effects the binding of both triose substrates. Finally, mutation of Lys325 has a greater effect on catalysis than on binding, however, given the magnitude of the effects it is likely that it plays an indirect role in maintaining other critical residues in a catalytically competent conformation. Interestingly, despite its proximity to the active site and high sequence conservation, replacement of a fourth residue, Gln59 (Q59A) had no significant effect on the function of the enzyme. In a separate study to characterize the molecular basis of aldolase specificity, the agaY-encoded tagatose 1,6-bisphosphate aldolase of E. coli was cloned, expressed and kinetically characterized. Our studies showed that the two aldolases are highly discriminating between the diastereoisomers fructose bisphosphate and tagatose bisphosphate, each enzyme preferring its cognate substrate by a factor of 300-1500-fold. This produces an overall discrimination factor of almost 5 x 105 between the two enzymes. Using the X-ray structure of the fructose 1,6-bisphosphate aldolase and multiple sequence alignments, several residues were identified, which are highly conserved and are in the vicinity of the active site. These residues might potentially be important in substrate recognition. As a consequence, nine mutations were made in attempts to switch the specificity of the fructose 1,6-bisphosphate aldolase to that of the tagatose 1,6-bisphosphate aldolase and the effect on substrate discrimination was evaluated. Surprisingly, despite making multiple changes in the active site, many of which abolished fructose 1, 6-bisphosphate aldolase activity, no switch in specificity was observed. This highlights the complexity of enzyme catalysis in this family of enzymes, and points to the need for further structural studies before we fully understand the subtleties of the shaping of the active site for complementarity to the cognate substrate.  相似文献   

8.
Naught LE  Tipton PA 《Biochemistry》2005,44(18):6831-6836
The interconversion of glucose 1-phosphate and glucose 6-phosphate, catalyzed by Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase, has been studied by transient-state kinetic techniques. Glucose 1,6-bisphosphate is formed as an intermediate in the reaction, but an obligatory step in the catalytic cycle appears to be the formation of an enzyme-glucose 1,6-bisphosphate complex that is not competent to form either glucose 1-phosphate or glucose 6-phosphate directly. We suggest that during the lifetime of this complex the glucose 1,6-bisphosphate intermediate undergoes the 180 degrees reorientation that is required for completion of the catalytic cycle. The formation of glucose 1,6-bisphosphate from glucose 1-phosphate is in rapid equilibrium relative to the rest of the reaction, where K(eq) = 0.14. In the opposite direction, glucose 1,6-bisphosphate is formed from glucose 6-phosphate with a rate constant of 12 s(-)(1), and the reverse step occurs with a rate constant of 255 s(-)(1). The interconversion of the productive and nonproductive glucose 1,6-bisphosphate complexes occurs with a rate constant of 64 s(-)(1) in one direction and 48 s(-)(1) in the other direction. Glucose 1,6-bisphosphate remains associated with the enzyme during reorientation. Isotope trapping studies indicate that it partitions to form glucose 1-phosphate or glucose 6-phosphate 14.3 times more frequently than it dissociates from the enzyme.  相似文献   

9.
Fructose 2,6-bisphosphate. A new activator of phosphofructokinase   总被引:13,自引:0,他引:13  
A new activator of rat liver phosphofructokinase was partially purified from rat hepatocyte extracts by DEAE-Sephadex chromatography. The activator, which eluted in the sugar diphosphate region, was sensitive to acid treatment but resistant to heating in alkali. Mild acid hydrolysis resulted in the appearance of a sugar monophosphate which was identified as fructose 6-phosphate by gas chromatography/mass spectroscopy. These observations suggest that the activator is fructose 2,6-bisphosphate. This compound was synthesized by first reacting fructose 1,6-bisphosphate with dicyclohexylcarbodiimide and then treating the cyclic intermediate with alkali. The structure of the synthetic compound was definitively identified as fructose 2,6-bisphosphate by 13C NMR spectroscopy. Fructose 2,6-bisphosphate had properties identical with those of the activator purified from hepatocyte extracts. It activated both the rat liver and rabbit skeletal muscle enzyme in the 0.1 microM range and was several orders of magnitude more effective than fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate was not a substrate for aldolase or fructose 1,6-bisphosphatase. It is likely that this new activator is an important physiologic factor of phosphofructokinase in vivo.  相似文献   

10.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

11.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

12.
The effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which has been hypothesized to be a chemical transmitter in excitation-contraction coupling in skeletal muscle, on aldolase bound to isolated triad junctions were investigated. Fructose-1,6-bisphosphate aldolase was identified as the major specific binding protein for the Ins(1,4,5)P3 analogue glycolaldehyde (2)-1-phospho-D-myo-inositol 4,5-bisphosphate which can form covalent bonds with protein amino groups by reduction of the Schiff's base intermediate with [3H]NaCNBH3. This analogue, Ins(1,4,5) P3, and the inositol polyphosphates inositol 1,3,4,5-tetrakisphosphate and inositol 1,4-bisphosphate were nearly equipotent in selectively releasing membrane bound aldolase with a K0.5 of about 3 microM. The rank order of the K0.5 values was identical to the KI values for inhibition of aldolase. Aldolase was also released by its substrate fructose 1,6-bisphosphate and by 2,3-bisphosphoglycerate. Ins(1,4,5)P3-induced aldolase release did not disrupt the triad junction; glyceraldehyde-3-phosphate dehydrogenase, a known junctional constituent, was displaced only at much higher Ins(1,4,5)P3 concentrations. Ins(1,4,5)P3 was as effective as fructose 1,6-bisphosphate in releasing aldolase from myofibrils. A finite number of binding sites for aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase/mg of triad protein, KD = 23 nM). The junctional foot protein was implicated as an aldolase binding site by affinity chromatography with the junctional foot protein immobilized on Sepharose 4B. The potential consequences of aldolase being bound in the gap between the terminal cisternae and the transverse tubule to inositol polyphosphate and glycolytic metabolism in that local region are discussed.  相似文献   

13.
14.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

15.
6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.  相似文献   

16.
Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate   总被引:1,自引:0,他引:1  
Fructose 2,6-bisphosphate inhibits phosphoglucomutase. The inhibition is mixed with respect to glucose 1,6-bisphosphate and non-competitive with respect to glucose 1-phosphate. In contrast with fructose 1,6-bisphosphate and glycerate 1,3-bisphosphate, which also possess inhibitory effect, fructose 2,6-bisphosphate does not phosphorylate phosphoglucomutase. Fructose 2,6-bisphosphate preparations contain contaminants which can explain artefactual results previously reported.  相似文献   

17.
Pyrophosphate : fructose-6-phosphate phosphotransferase (PPi-PFK) has been purified 150-fold from potato tubers and the kinetic properties of the purified enzyme have been investigated both in the forward and the reverse direction. Saturation curves for fructose 6-phosphate and also for fructose 1,6-bisphosphate were sigmoidal whereas those for PPi and Pi were hyperbolic. In the presence of fructose 2,6-bisphosphate, the affinity for fructose 6-phosphate and for fructose 1,6-bisphosphate were greatly increased and the kinetics became Micha?lian. The effect of fructose 2,6-bisphosphate was increased by the presence of fructose 6-phosphate and decreased by the presence of Pi. Consequently, the Ka for fructose 2,6-bisphosphate was as low as 5 nM for the forward reaction and reached 150 nM for the reverse reaction. On the basis of these properties, a procedure allowing one to measure fructose 2,6-bisphosphate in amounts lower than a picomole, is described.  相似文献   

18.
The enzymatic reaction carried out by class I fructose-1,6-bisphosphate aldolase is known in great detail in terms of reaction intermediates, but the precise role of individual amino acids in the active site is poorly understood. Therefore, on the basis of the crystallographic structure of the complex between aldolase and dihydroxyacetone phosphate a molecular modelling study was undertaken to predict the Michaelis complex with fructose-1,6-bisphosphate and several covalent enzymatic reaction intermediates. This model reveals the unknown 6-phosphate binding site and assigns distinct roles to crucial residues. Asp33 is responsible for aligning the 2-keto function of the substrate correctly for nucleophilic attack by Lys229, and plays a role in carbinolamine formation. Lys146 assists in carbinolamine dehydration and is essential for stabilising the developing negative charge on O4 of fructose-1,6-bisphosphate during hydroxyl proton abstraction by Glu187. Subsequently, Glu187 is also responsible for protonating C1 of the dihydroxyacetone phosphate enamine. In addition, the absolute configuration of the fructose-1,6-bisphosphate carbinol intermediate is shown to be (2S), in agreement with the crystal structure, but opposite from the interpretation in the literature of the stereospecific reduction of the aldolase fructose-1,6-bisphosphate complex with sodium borohydride. It is demonstrated that the outcome of the latter type of experiment critically depends on conformational changes triggered by Schiff base formation. Electronic Supplementary Material available.  相似文献   

19.
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.  相似文献   

20.
Mature epididymal boar spermatozoa converted fructose and glycerol to carbon dioxide but in the presence of 3-chloro-1-hydroxyacetone these oxidations were inhibited. When the substrate was fructose, there was an increase in the amounts of fructose 1,6-bisphosphate and dihydroxyacetone phosphate but these glycolytic intermediates did not accumulate when glycerol was the substrate. Examination of enzyme activities in mature boar spermatozoa incubated with 3-chloro-1-hydroxyacetone, which is metabolised in vitro to (S)-3-chlorolactaldehyde, confirmed that glyceraldehyde 3-phosphate dehydrogenase and triosephosphate isomerase were both inhibited to equivalent degrees by this metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号