首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver 60 S ribosomal subunits were modified with 2-iminothiolane. After treatment with hydrogen peroxide, the cross-linked proteins were extracted and then separated into 24 fractions by chromatography on carboxymethylcellulose. Each protein fraction was then analyzed by diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis (Sommer, A., and Traut, R.R. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 3946-3950). The pieces of gel containing cross-linked protein spots that were shifted from the diagonal line were labeled with 125I. The labeled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. Fifty-three cross-linked protein pairs involving 35 protein species containing two acidic proteins were identified. From these and previous results, a preliminary model of the protein topography of the 60 S ribosomal subunit was constructed and discussed in relation to other functional data on 60 S ribosomal proteins.  相似文献   

2.
Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.  相似文献   

3.
When 40S subunits are irradiated at 254nm in presence of [3H] poly (U), formation of a 40S subunit-poly (U) complex can be demonstrated either by filtration technique at low Mg++ concentration or by polyacrylamide gel electrophoresis. No stable complex was detected using unirradiated samples under the same conditions. Electrophoresis of this complex in the presence of dodecyl sulfate showed that part of the poly (U) directly associates with 18S RNA. This association is not through proteins, since it is not disrupted by pronase treatment.  相似文献   

4.
Bacillus stearothermophilus 50 S ribosomal subunits have been reconstituted from a mixture of purified RNA and protein components. The protein fraction of 50 S subunits was separated into 27 components by a combination of various methods including ion exchange and gel filtration chromatography. The individual proteins showed single bands in a variety of polyacrylamide gel electrophoresis systems, and nearly all showed single spots on two-dimensional polyacrylamide gels. The molecular weights of the proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An equimolar mixture of the purified proteins was combined with 23 S RNA and 5 S RNA to reconstitute active 50 S subunits by the procedure of Nomura and Erdmann (Nomura, M., and Erdmann, V. A. (1970) Nature 226, 1214-1218). Reconstituted 52 S subunits containing purified proteins were slightly more active than subunits reconstituted with an unfractionated total protein extract in poly(U)-dependent polyphenylalanine synthesis and showed comparable activity in various assays for ribosomal function. The reconstitution proceeded more rapidly with the mixture of purified proteins than with the total protein extract. Reconstituted 50 S subunits containing purified proteins co-sedimented with native 50 S subunits on sucrose gradients and had a similar protein compsoition. Initial experiments on the roles of the individual proteins in ribosomal structure and function were performed. B. stearothermophilus protein 13 was extracted from 50 S subunits under the same conditions as escherichia coli L7/L12, and the extraction had a similar effect on ribosomal function. When single proteins were omitted from reconstitution mixtures, in most cases the reconstituted 50 S subunits showed decreased activity in polypheylalanine synthesis.  相似文献   

5.
Rat liver 80 S ribosomes were cross-linked with 2-iminothiolane. Proteins extracted from the cross-linked 80 S ribosomes were separated into 25 fractions by chromatography on carboxy methylcellulose. Each protein fraction was analyzed by diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Eight pairs characteristic of 80 S ribosomes were detected which did not appear when isolated 40 S and 60 S subunits were cross-linked, and the cross-linked proteins were analyzed in similar manners. The cross-linked components were radioiodinated and then analyzed by two-dimensional gel electrophoresis, followed by autoradiography. Eight kinds of cross-links between 60 S subunit proteins and 40 S subunit proteins were identified as follows: SA30 (acidic protein with Mr 30,000)-LA33 (acidic protein with Mr 33,000), S2-LA33, S2-L11, S3a-L11, S4-L5, S25-L5, S4-L24 and S6-L24.  相似文献   

6.
The extraction of proteins from eukaryotic ribosomes and ribosomal subunits   总被引:4,自引:0,他引:4  
Proteins were extracted from rat liver ribosomes and ribosomal subunits: with 67% acetic acid (in the presence of 3.3 mM, 33 mM, or 67 mM Mg) with 2 M LiCL in 4 M urea; with 0.25 N HCI; with 1% SDS; and after RNase digestion. The most efficient extraction and the best recovery were either with acetic acid in the presence of 33 mM or 67 mM Mg, or with LiCI-urea. Protein extracted with acetic acid, LiCi-urea, or with HCI had little or no contamination with RNA. The ribosomal proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis: the proteins extracted with acetic acid were the most soluble in the sample gel solution; their electrophoretograms displayed the maximum number of spots and the smallest number of derivatives or altered proteins. Preparations of protein extracted with SDS or RNase were relatively insoluble in the sample gel solution, and proteins extracted with HCI showed a large number of derivatives. All things considered, the most satisfactory method for the extraction of protein from eukaryotic ribosomes is with 67% acetic acid in the presence of 33 mM MgCl2.  相似文献   

7.
Tetrahymena pyriformis ribosomal subunits were obtained by incubation of post-mitochondrial supernatant in the presence of 0.2 mM GTP and 0.1 mM puromycin for 45 min at 28 degrees C, followed by sucrose density gradient centrifugation. Isolated 40-S subunits were able to reassociate in vitro in the presence of 5 mM MgCl2 and 50 mM KCl and to perform poly(U)-dependent protein synthesis. The 60-S subunit carries the peptidyl transferase activity. The number of proteins in T. pyriformis ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40-S subunit contains 30 different protein species (including two acidic proteins). The 60-S subunit contains 35 different protein species (including two acidic proteins). The proteins were numbered following the system of Kaltschmidt and Wittmann.  相似文献   

8.
Tetrahymena pyriformis 60-S ribosomal subunits treated with EDTA release a 7-S particle containing 5-S RNA and a 36000-Mr protein that is similar to mammalian 5-S-RNA-binding protein L5 in molecular weight, in two-dimensional acrylamide gel mobility, and in peptide pattern as generated by a simple, one-dimensional acrylamide gel technique. Human and T. pyriformis 40-S ribosomal subunits, treated with buffers lacking magnesium or containing EDTA, release varying amounts of two large acidic proteins. We have identified these released proteins by two-dimensional gel electrophoresis.  相似文献   

9.
Complexes containing rat liver 80 S ribosomes, poly(uridylic acid), phenylalanyl-tRNA, elongation factor 1 alpha, and guanylyl(beta, gamma-methylene)-diphosphonate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 26 fractions by chromatography on carboxymethylcellulose. Each protein fraction was subjected to diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Four cross-linked pairs containing elongation factor 1 alpha were on the vertical line below the diagonal. The ribosomal protein spot of each pair was cut out from the gel plate and labeled with 125I. The labeled proteins were extracted from the gel and identified by two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both 60 S and 40 S subunits were identified: L12, L23, L39, S23/S24, and S26, three proteins of which had been found to be cross-linked also to elongation factor 2 (Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., and Ogata, K. (1986) Eur. J. Biochem. 156, 37-44). These results afford direct evidence that both elongation factors interact with partially overlapping sites on rat liver ribosomes.  相似文献   

10.
Neighboring proteins in rat liver 60 S ribosomal subunits were investigated by two kinds of cross-linking techniques: treatment of 60 S subunits with 1) hydrogen peroxide, which promotes the formation of protein-protein disulfide linkages and 2) a disulfide-bridged bifunctional reagent dithiobis(succinimidyl propionate). The cross-linked protein complexes formed were separated by two-dimensional polyacrylamide gel electrophoresis in a basic-sodium dodecyl sulfate gel system under nonreducing conditions. Each complex in the gel was labeled with 125I and extracted under reducing conditions. The protein components of the complex were analyzed by two kinds of two-dimensional polyacrylamide gel electrophoresis, followed by autoradiography. Closely neighboring pairs disulfide-linked by hydrogen peroxide were identified as L4-L6, L4-L29, L6-L29, L18a-L29, and L29-L32; more distant pairs cross-linked with dithiobis(succinimidyl propionate) were identified as L3-L5, L3-L24, L3-L37a, L4-L14, L4-L18a, L5-L10, L5-L11, L7/L7a-L27, L7/L7a-L36, L13-L35, and L13a-L14.  相似文献   

11.
Protein-protein cross-linking was used to examine the spatial arrangement of proteins within the 40 S ribosomal subunits of Saccharomyces cerevisiae. Purified ribosomal subunits were treated with either 2-iminothiolane or dimethyl 3,3'-dithiobispropionimidate under conditions such that the ribosomal particle was intact and that formation of 40 S subunit dimers was minimized. Proteins were extracted from the treated subunits and fractionated on Sephadex G-150 or by acid-urea-polyacrylamide gel electrophoresis. Cross-linked proteins in these fractions were analyzed by two-dimensional diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Constituent members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Forty-two pairs involving 25 of the 32 40 S subunit proteins were identified. Many proteins were detected in several cross-linked dimers. These proteins with multiple cross-links form foci for the construction of a schematic model of the spatial arrangement of proteins within the 40 S subunit.  相似文献   

12.
Protein-protein cross-linking was used to determine the spatial arrangement of proteins within the 60 S ribosomal subunits of Saccharomyces cerevisiae. Protein cross-links were generated by treatment of intact ribosomal subunits with dimethyl 3,3'-dithiobispropionimidate. Proteins were extracted from the treated subunits and fractionated by Cm-cellulose chromatography. Cross-linked proteins in these fractions were analyzed by electrophoresis on two-dimensional diagonal polyacrylamide gels containing sodium dodecyl sulfate. Component members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Seventeen pairs involving 16 of the 45 60 S subunit proteins were identified. Several proteins were detected in numerous cross-linked dimers and were used as foci for constructing a model depicting the arrangement of proteins within the 60 S ribosomal subunit. The model also incorporated previously published data on structure and function of proteins from the yeast 60 S subunit.  相似文献   

13.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

14.
Rat liver 60-S ribosomal subunits were submitted to increasing doses of radiation (253.7 nm), at 4 degrees C and 25 degrees C, as previously reported fro 40-S subunits. The existence of protein-RNA cross-linking was demonstrated by two methods. The first consisted in the separation of protein-RNA complex; the second was indirect, and took into account alteration either in the electrophoretic mobility of cross-linked proteins or the separability of 28-S RNA in a 4 M urea/3 M LiCl buffer. The peptide synthetase activity and the sedimentation characteristics of the particles irradiated at 4 degrees C were well preserved, but at 25 degrees C the large subunits were progressively inactivated and unfolded for doses higher than 2 x 10(18) quanta. The dose-dependent variations of protein cross-linkage determined by two-dimensional gel electrophoresis allowed us to distinguish those proteins which reacted at the lowest doses with a first-order reaction from those which cross-linked to RNA after a subtle modification of the subunit structure. At 25 degrees C, all proteins became low-dose reactive. The curve obtained for 28-S RNA cross-linkage was similar to that of the total protein moiety, while those obtained fro the 5-S and 5.8-S RNA (which were parallel) suggest a lower reactivity of these RNAs. As a general rule, proteins from the large subunits were more reactive to RNA than those from the small subunits. This could indicate differences in the organisation of the two subunits.  相似文献   

15.
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12.  相似文献   

16.
A series of P-site probes, chlorambucilyl-(Pro)n-Phe-tRNAPhe, were prepared and reacted with poly(U)-directed Escherichia coli MRE 600 ribosomes. Upon binding of the probes to ribosomes, 90% of the cpm bound were not released following subsequent interaction with puromycin. In the absence of poly(U) or in the presence of poly(C), binding was limited to the amount of cpm bound if ribosomes were incubated in the presence of puromycin before adding modified tRNA and poly(U). AcPhe-tRNAPhe was a competitive inhibitor of chlorambucilyl Phe-tRNAPhe. Binding to 50S subunits was strongly stimulated by poly(U), while binding to 30S subunits was not. Crosslinked 50S proteins were analyzed by two-dimensional gel electrophoresis. Crosslinking with molecular rulers containing zero prolines led to poly(U)-dependent labeling of L1 and L27. With rulers containing five prolines, L6, L25, L28, and the group L18,23,24 were labeled. Analysis of crosslinked ribosomal RNA on sucrose density gradients revealed almost no cpm in the 16S or 23S peaks, but only in the 5S peaks. This was observed with molecular rulers containing either zero or five proline residues.  相似文献   

17.
R H Xiang  J C Lee 《Biochimie》1989,71(11-12):1201-1204
RNA-protein crosslinks were introduced into the 40S ribosomal subunits from Saccharomyces cerevisiae by mild UV treatment. Proteins crosslinked to the 18S rRNA molecule were separated from free proteins by repeated extraction of the treated subunits and centrifugation in glycerol gradients. After digestion with RNase to remove the RNA molecules, proteins were radio-labeled with 125I and identified by electrophoresis on two-dimensional polyacrylamide gels with carrier total 40S ribosomal proteins and autoradiography. Proteins S2, S7, S13, S14, S17/22/27, and S18 were linked to the 18S rRNA. A shorter period of irradiation resulted in crosslinking of S2 and S17/22/27 only. Several of these proteins were previously demonstrated to be present in ribosomal core particles or early assembled proteins.  相似文献   

18.
Size and location of poly (A) in encephalomyocarditis virus RNA.   总被引:2,自引:1,他引:1       下载免费PDF全文
Encephalomyocarditis (EMC) virus RNA contains a covalently bound sequence of polyriboadenylic acid (poly(A). This was determined by two-dimensional gel electrophoresis of complete T1 and pancreatic RNase digests of formamidesucrose gradient-purified RNA and subsequent analysis of the product by alkaline hydrolysis. The size of the EMC virus genomic poly(A) sequence was estimated by formamide-polyacrylamide gel electrophoresis of the RNase-resistant product, or by [3H-]poly(U) hybridization to freshly purified virion RNA, to be, on average, 40 nucleotides in length. The evidence obtained from [3H-]isoniazid labelling and other experiments would indicate that the poly(A) sequence is located at the 3'-terminus of EMC virus RNA.  相似文献   

19.
V H Du Vernay  J A Traugh 《Biochemistry》1978,17(11):2045-2049
In reticulocytes, a single ribosomal protein, S13, has been shown to be phosphorylated by the cAMP-regulated protein kinases. The 40S ribosomal subunits were phosphorylated in vitro with [gamma-32P]ATP to facilitate the identification of S13 during the two-step purification procedure. Total ribosomal protein from the 40S subunit was fractionated by phosphocellulose chromatography in urea, and S13 was purified to homogeneity by gel filtration on Sephadex G-100. The protein was identified by the radioactive phosphate, by molecular weight, and by the migration characteristics in a two-dimensional polyacrylamide gel electrophoresis system. Thin-layer electrophoresis of partial acid hydrolysates of S13 showed that more than one phosphorylated residue was present in the same oligopeptide, indicating at least some of the phosphoryl groups were clustered in the protein molecule.  相似文献   

20.
The 70 S ribosomes of Escherichia coli were treated with 2-iminothiolane with the resultant addition of 110 sulfhydryl groups per ribosome. The modified ribosomes were oxidized to promote disulfide bond formation, some of which formed intermolecular crosslinks. About 50% of the crosslinked 70 S ribosomes did not dissociate when exposed to low concentrations of magnesium in the absence of reducting agent. Dissociation took place in the presence of reducing agents, which indicated that the subunits had become covalently linked by disulfide linkages. Proteins extracted from purified crosslinked 70 S ribosomes were first fractionated by polyacrylamide/urea gel electrophoresis. The proteins from sequential slices of these gels were analyzed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Monomeric proteins derived from crosslinked dimers appeared below the diagonal containing non-crosslinked proteins, since the second electrophoresis, but not the first, is run under reducing conditions to cleave the crosslinked species. Final identification of the proteins in each dimer was made by radioiodination of the crosslinked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of non-radioactive total 70 S proteins as markers. This paper describes the identification of 23 protein dimers that contained one protein from each of the two different ribosomal subunits. The proteins implicated must have some part of their structure in proximity to the other ribosomal subunit and are therefore defined as “interface proteins”. The group of interface proteins thus defined includes 50 S proteins that are part of the 5 S RNA: protein complex and 30 S proteins at the initiation site. Correlations between the crosslinked interface proteins and other functional data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号