首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salivary statherin is a highly acidic, 43 amino acid residue protein that functions as an inhibitor of primary and secondary crystallization of the biomineral hydroxyapatite. The acidic domain at the N-terminus was previously shown to be important in the binding of statherin to hydroxyapatite surfaces. This acidic segment is followed by a basic segment whose role is unclear. In this study, the role of the basic amino acids in the hydroxyapatite adsorption thermodynamics has been determined using isothermal titration calorimetry and equilibrium adsorption isotherm analysis. Single point mutations of the basic side chains to alanine lowered the binding affinity to the surface but did not perturb the maximal surface coverage and the adsorption enthalpy. The structural and dynamic properties of the single point mutants as characterized by solid-state NMR techniques were not altered either. Simultaneous replacement of all four basic amino acids with alanine lowered the adsorption equilibrium constant by 5-fold and the maximal surface coverage by nearly 2-fold. The initial exothermic phase of adsorption exhibited by native statherin is preserved in this mutant, along with the alpha-helical structure and the dynamic properties of the N-terminal domain. These results help to refine the two binding site model of statherin adsorption proposed earlier in our study of wild-type statherin (Goobes, R., Goobes, G., Campbell, C.T., and Stayton, P.S. (2006) Biochemistry 45, 5576-5586). The basic charges function to reduce protein-protein charge repulsion on the HAP surface, and in their absence, there is a considerable decrease in statherin packing density on the surface at binding saturation.  相似文献   

2.
The structural domains of salivary statherin that are partly responsible for the protection and recalcification of tooth enamel were examined with respect to charge, sequence, hydrophobicity, hydrogen bonding potential, and conformation. Several fragments of statherin, 1-15 (SN15), 5-15 (SN11), 15-29 (SM15), 29-43 (SC15), 19-43 (SC25), and analogs of the N-terminal 15-residue sequence, where phosphoserines at positions 2 and 3 have been replaced by Ser (SNS15) and Asp (SNA15), respectively, were synthesized. The abilities of these fragments to adsorb at hydroxyapatite (HAP) surfaces and to inhibit its mineralization in supersaturated solutions were determined and compared with those of the whole statherin molecule, reported previously. The conformational preferences of the fragments both in aqueous and nonaqueous solutions were examined by circular dichroism. The highly charged N-terminal SN15 fragment has the greatest adsorption to HAP as compared with statherin and all other fragments. Its mineralization inhibitory activity is significantly greater than those of other fragments and comparable with that of the whole molecule. The dephosphorylated N-terminal fragment SNS15 shows a decreased tendency to adhere to and inhibit the formation of HAP, as compared with SN15. However, the substitution of Asp residues in place of phosphoserines (SNA15), restores the binding affinity and crystal growth inhibition properties, suggesting that the negative charge density at the N-terminal rather than any specific interaction of the phosphate group is important for HAP surface interactions. The C-terminal SC15 and SC25 fragments elicit a much higher affinity for HAP surface than that of the middle sequence (SM15), indicating that hydrogen bonding potential of the C-terminal sequence also contributes to the interaction of statherin with HAP. CD studies provide evidence that the N-terminal SN15 fragment has a strong tendency to adopt an ordered helical conformation, whereas the shorter N-terminal sequence, middle, and C-terminal fragments are structurally flexible and prefer to adopt scattered turn structures or unordered random conformations in organic and aqueous solutions. Collectively, the data indicate that the negative charge density, sequence (1-15), and helical conformation at the N-terminal region of statherin are important for its surface interaction with HAP.  相似文献   

3.
4.
A three dimensional model was developed for Cry10Aa protein sequence of B. thuringiensis LDC-9 and B. thuringiensis israelensis that has not been solved empirically by X-ray crystallography or NMR. Homology modeling was employed for the structure prediction using Cry2Aa as template protein, a high-resolution X-ray crystallography structure. The model predicted for the B. thuringiensis LDC-9 Cry10Aa protein reveals a partial N-terminal domain only due to its partial sequence of 104 amino acids. B. thuringiensis israelensis Cry10Aa model contains three domains such as domain I, a bundle of eight alpha helices with the central relatively hydrophobic helix surrounded by amphipathic helices while domain II and III contain mostly beta-sheets. Significant structural differences within domain II in this model among all Cry protein structures indicates that it is involved in recognition and binding to cell surfaces. Comparison of B. thuringiensis israelensis predicted structure with available experimentally determined Cry structures reveals identical folds. The distribution of electrostatic potential on the surface of the molecules in the model is non-uniform and identifies one side of the alpha-helical domain as negatively charged indicating orientation of toxic molecules toward the cell membrane during the initial binding with a cell surface receptor. The collective knowledge of Cry toxin structures will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated. This model will serve as a starting point for the design of mutagenesis experiments aimed to improve the toxicity and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.  相似文献   

5.
We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces.  相似文献   

6.
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.  相似文献   

7.
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.  相似文献   

8.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

9.
We have used NMR to study the effects of peptide binding on the N-terminal p53-binding domain of human MDM2 (residues 25-109). There were changes in HSQC-chemical shifts throughout the domain on binding four different p53-derived peptide ligands that were significantly large to be indicative of global conformational changes. Large changes in chemical shift were observed in two main regions: the peptide-binding cleft that directly binds the p53 ligands; and the hinge regions connecting the beta-sheet and alpha-helical structures that form the binding cleft. These conformational changes reflect the adaptation of the cleft on binding peptide ligands that differ in length and amino acid composition. Different ligands may induce different conformational transitions in MDM2 that could be responsible for its function. The dynamic nature of MDM2 might be important in the design of anti-cancer drugs that are targeted to its p53-binding site.  相似文献   

10.
Intra-cellular membrane fusion is facilitated by the association of SNAREs from opposite membranes into stable alpha-helical bundles. Many SNAREs, in addition to their alpha-helical regions, contain N-terminal domains that likely have essential regulatory functions. To better understand this regulation, we have determined the 2.4-A crystal structure of the 130-amino acid N-terminal domain of mouse Sec22b (mSec22b), a SNARE involved in endoplasmic reticulum/Golgi membrane trafficking. The domain consists of a mixed alpha-helical/beta-sheet fold that resembles a circular permutation of the actin/poly-proline binding protein, profilin, and the GAF/PAS family of regulatory modules. The structure is distinct from the previously characterized N-terminal domain of syntaxin 1A, and, unlike syntaxin 1A, the N-terminal domain of mSec22b has no effect on the rate of SNARE assembly in vitro. An analysis of surface conserved residues reveals a potential protein interaction site. Key residues in this site are distinct in two mammalian Sec22 variants that lack SNARE domains. Finally, sequence analysis indicates that a similar domain is likely present in the endosomal/lysosomal SNARE VAMP7.  相似文献   

11.
Xanthan lyase, a member of polysaccharide lyase family 8, is a key enzyme for complete depolymerization of a bacterial heteropolysaccharide, xanthan, in Bacillus sp. GL1. The enzyme acts exolytically on the side chains of the polysaccharide. The x-ray crystallographic structure of xanthan lyase was determined by the multiple isomorphous replacement method. The crystal structures of xanthan lyase and its complex with the product (pyruvylated mannose) were refined at 2.3 and 2.4 A resolution with final R-factors of 17.5 and 16.9%, respectively. The refined structure of the product-free enzyme comprises 752 amino acid residues, 248 water molecules, and one calcium ion. The enzyme consists of N-terminal alpha-helical and C-terminal beta-sheet domains, which constitute incomplete alpha(5)/alpha(5)-barrel and anti-parallel beta-sheet structures, respectively. A deep cleft is located in the N-terminal alpha-helical domain facing the interface between the two domains. Although the overall structure of the enzyme is basically the same as that of the family 8 lyases for hyaluronate and chondroitin AC, significant differences were observed in the loop structure over the cleft. The crystal structure of the xanthan lyase complexed with pyruvylated mannose indicates that the sugar-binding site is located in the deep cleft, where aromatic and positively charged amino acid residues are involved in the binding. The Arg(313) and Tyr(315) residues in the loop from the N-terminal domain and the Arg(612) residue in the loop from the C-terminal domain directly bind to the pyruvate moiety of the product through the formation of hydrogen bonds, thus determining the substrate specificity of the enzyme.  相似文献   

12.
13.
Structural studies of the calmodulin-dependent protein kinase I have shown how the calmodulin-binding domain and autoinhibitory domain interact with the active sites of the enzyme. In this work, we have studied the interaction in solution of two synthetic short and long (22- and 37-residue) peptides representing the binding and autoinhibitory domains of CaMKI with Ca2+-CaM using CD, NMR, and EPR spectroscopy. Both peptides adopt alpha-helical structure when bound to Ca2+-CaM, as detected by CD spectroscopy. Cadmium-113 NMR showed that both peptides induced cooperativity in metal ion binding between the two lobes of the protein. To directly observe the effect of the peptides upon CaM in solution, biosynthetically isotope labeled [methyl-13C-Met]CaM was prepared and studied by 1H, 13C NMR. The relaxation effects of two nitroxide spin-labeled derivatives of the short peptide showed the N-terminal portion of the CaM-binding domain interacting with the C-lobe of CaM, while the C-lobe of the peptide binds to the N-lobe of CaM. Our results are consistent with Trp303 and Met316 acting as the anchoring residues for the C- and N-lobes of CaM, respectively. The NMR spectra of the long peptide showed further differences, suggesting that additional interactions may exist between the autoinhibitory domain and CaM.  相似文献   

14.
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.  相似文献   

15.
Chemokine receptors are the central signaling hubs of several processes such as cell migration, chemotaxis and cell positioning. In this graphical review, we provide an overview of the structural and mechanistic principles governing chemokine recognition that are currently emerging. Structural models of chemokine-receptor co-complexes with endogenous chemokines, viral chemokines and therapeutics have been resolved that highlight multiple interaction sites, termed as CRS1, CRS1.5 etc. The first site of interaction has been shown to be the N-terminal domain of the receptors (CRS1 site). A large structural flexibility of the N-terminal domain has been reported that was supported by both experimental and simulation studies. Upon chemokine binding, the N-terminal domain appears to show constricted dynamics and opens up to interact with the chemokine via a large interface. The subsequent sites such as CRS1.5 and CRS2 sites have been structurally well resolved although differences arise such as the localization of the N-terminus of the ligand to a major or minor pocket of the orthosteric binding site. Several computational studies have highlighted the dynamic protein-protein interface at the CRS1 site that seemingly appears to resolve the differences in NMR and mutagenesis studies. Interestingly, the differential dynamics at the CRS1 site suggests a mixed model of binding with complex signatures of both conformational selection and induced fit models. Integrative experimental and computational approaches could help unravel the structural basis of promiscuity and specificity in chemokine-receptor binding and open up new avenues of therapeutic design.  相似文献   

16.
Oxenoid K  Sönnichsen FD  Sanders CR 《Biochemistry》2002,41(42):12876-12882
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.  相似文献   

17.
18.
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.  相似文献   

19.
The peripheral stalk of ATP synthase holds the alpha3beta3 catalytic subcomplex stationary against the torque of the rotating central stalk. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha-subunits of the F1 subcomplex. Here we present the solution structure of OSCP-NT and an NMR titration study of its interaction with peptides representing N-terminal tails of F1 alpha-subunits. The structure comprises a bundle of six alpha-helices, and its interaction site contains adjoining hydrophobic surfaces of helices 1 and 5; residues in the region 1-8 of the alpha-subunit are essential for the interaction. The OSCP-NT is similar to the N-terminal domain of the delta-subunit from Escherichia coli ATP synthase (delta-NT), except that their surface charges differ (basic and acidic, respectively). As the charges of the adjacent crown regions in their alpha3beta3 complexes are similar, the OSCP-NT and delta-NT probably do not contact the crowns extensively. The N-terminal tails of alpha-subunit tails are probably alpha-helical, and so this interface, which is essential for the rotary mechanism of the enzyme, appears to consist of helix-helix interactions.  相似文献   

20.
FtsY, the Escherichia coli homologue of the eukaryotic signal recognition particle (SRP) receptor alpha-subunit, is located in both the cytoplasm and inner membrane. It has been proposed that FtsY has a direct targeting function, but the mechanism of its association with the membrane is unclear. FtsY is composed of two hydrophilic domains: a highly charged N-terminal domain (the A-domain) and a C-terminal GTP-binding domain (the NG-domain). FtsY does not contain any hydrophobic sequence that might explain its affinity for the inner membrane, and a membrane-anchoring protein has not been detected. In this study, we provide evidence that FtsY interacts directly with E.coli phospholipids, with a preference for anionic phospholipids. The interaction involves at least two lipid-binding sites, one of which is present in the NG-domain. Lipid association induced a conformational change in FtsY and greatly enhanced its GTPase activity. We propose that lipid binding of FtsY is important for the regulation of SRP-mediated protein targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号