首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.  相似文献   

2.
Tyrosine phosphorylation is a dynamic reversible post-translational modification that regulates many aspects of cell biology. To understand how this modification controls biological function, it is necessary to not only identify the specific sites of phosphorylation, but also to quantify how phosphorylation levels on these sites may be altered under specific physiological conditions. Due to its sensitivity and accuracy, mass spectrometry (MS) has widely been applied to the identification and characterization of phosphotyrosine signaling across biological systems. In this review we highlight the advances in both MS and phosphotyrosine enrichment methods that have been developed to enable the identification of low level tyrosine phosphorylation events. Computational and manual approaches to ensure confident identification of phosphopeptide sequence and determination of phosphorylation site localization are discussed along with methods that have been applied to the relative quantification of large numbers of phosphorylation sites. Finally, we provide an overview of the challenges ahead as we extend these technologies to the characterization of tyrosine phosphorylation signaling in vivo. With these latest developments in analytical and computational techniques, it is now possible to derive biological insight from quantitative MS-based analysis of signaling networks in vitro and in vivo. Application of these approaches to a wide variety of biological systems will define how signal transduction regulates cellular physiology in health and disease.  相似文献   

3.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

4.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

5.
The binding of insulin to its receptor triggers a signaling cascade regulated by protein complexes via tyrosine phosphorylation events on a multitude of associated proteins. To search novel phosphotyrosine proteins or associated proteins involved in insulin signaling pathway, we employed a method in which Rat1 cells stably expressing the human insulin receptor were stimulated with or without insulin and sub-fractionated prior to enrichment of phosphotyrosine proteins by immunoprecipitation and analysis by LC-MS/MS. Bioinformatic analysis and manual confirmation of peptide phosphorylation site assignments led to identification of 35 phosphotyrosine sites derived from 31 protein groups. Over 50% of these proteins were reported for the first time as tyrosine phosphorylated, including gigaxonin, XIAP and CDK10. In addition, we also found that calcium/calmodulin-dependent protein serine kinase (CASK), a key protein in protein-targeting and vesicle transport in neurons, forms a complex with two unidentified phosphotyrosine proteins pp100 and pp95 in response to insulin-stimulation, though CASK is not itself tyrosine phosphorylated. Furthermore, insulin was able to decrease CASK nuclear location, as well as down-regulate the expression of CASK targeted genes. Our results imply CASK as a novel joint knot connecting CASK-mediated pathways with the insulin signaling. Our data provide a wealth of information potentially paving the way to identify new components in the insulin signaling network.  相似文献   

6.
7.
While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.  相似文献   

8.
Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome‐wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high‐accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high‐confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine‐specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho‐residues in Arabidopsis is similar to that in humans, where over 90 tyrosine‐specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.  相似文献   

9.
In the developing embryo, as in many other biological processes, complex signaling pathways are under tight control of reversible phosphorylation, guiding cell proliferation, differentiation, and growth. Therefore the large-scale identification of signaling proteins and their post-translational modifications is crucial to understand the proteome biology of the developing zebrafish embryo. Here, we used an automated, robust, and sensitive online TiO 2-based LC-MS/MS setup to enrich for phosphorylated peptides from 1 day old zebrafish embryos. We identified, with high confidence, 1067 endogenous phosphorylation sites in a sample taken from 60 embryos (approximately 180 microg), 321 from 10 embryos, and 47 phosphorylation sites from a single embryo, illustrating the sensitivity of the method. This data set, representing by far the largest for zebrafish, was further exploited by searching for serine/threonine or tyrosine kinase motifs using Scansite. For one-third of the identified phosphopeptides a potential kinase motif could be predicted, where it appeared that Cdk5 kinase, p38MAPK, PKA, and Casein Kinase 2 substrates were the most predominant motifs present, underpinning the importance of these kinases in signaling pathways in embryonic development. The phosphopeptide data set was further interrogated using alignments with phosphopeptides identified in recent large-scale phosphoproteomics screens in human and mouse samples. These alignments revealed conservation of phosphorylation sites in several proteins suggesting preserved function in embryonic development.  相似文献   

10.
A method for the determination of the sites of tyrosine phosphorylation in proteins and peptides at the low picomole level for "cold" phosphopeptides and at the subpicomole level for 32P-labeled phosphopeptides is presented. The procedure is based on solid-phase sequence analysis of phosphopeptides immobilized on carrier discs and the "on-line" detection by reverse-phase high-performance liquid chromatography of the phenylthiohydantoin derivative of phosphotyrosine. The procedure is sensitive and automated and allows the identification of phosphotyrosine derivatives in the same operation as the detection of the derivatives of the other common amino acids. Essentially quantitative extraction of the phosphotyrosine derivatives from the sequencer makes this method ideally suited for the quantitative assessment of protein-tyrosine kinase and protein phosphatase activities and for the determination of their respective recognition sequences.  相似文献   

11.
Z C Qu  E Moritz  R L Huganir 《Neuron》1990,4(3):367-378
The nicotinic acetylcholine receptor (AChR) from the electric organ of T. californica is highly phosphorylated on tyrosine residues in vivo. In contrast, tyrosine phosphorylation of the AChR in rat myotube cultures is barely detectable. To determine whether this low level of tyrosine phosphorylation of the AChR in muscle cell cultures is due to a lack of neuronal innervation, we examined tyrosine phosphorylation of the AChR in rat diaphragm in vivo. Immunofluorescent double labeling of cryostat sections of rat diaphragm using antibodies specific for phosphotyrosine or the AChR showed a direct colocalization of phosphotyrosine with the AChR at the neuromuscular junction. Using anti-phosphotyrosine antibodies, immunoblots of AChR partially purified from rat diaphragm demonstrated that the rat AChR contains high levels of phosphotyrosine. Denervation of rat diaphragm induced a time-dependent decrease in tyrosine phosphorylation of the AChR, as measured by immunocytochemical and immunoblot techniques. Tyrosine phosphorylation of the AChR occurred late in the development of the neuromuscular junction, between postnatal days 7 and 14. These studies suggest that muscle innervation regulates tyrosine phosphorylation of the AChR and that tyrosine phosphorylation may play an important role in the developmental regulation of the AChR.  相似文献   

12.
13.
Lu W  Shen K  Cole PA 《Biochemistry》2003,42(18):5461-5468
The regulation of the protein tyrosine phosphatase (PTPase) SHP-2 by tyrosine phosphorylation has been difficult to elucidate because of the intrinsic instability of the phosphoprotein. In the past, expressed protein ligation has been used to site-specifically incorporate the phosphotyrosine mimic Pmp (phosphonomethylene phenylalanine) into the two tyrosine phosphorylation sites (542, 580) of SHP-2 one at a time to analyze the effects on catalytic behavior. In this study, we have incorporated two Pmps into the phosphorylation sites simultaneously and examined the effects of double SHP-2 tyrosine phosphorylation. We have found that the Pmp groups show close to additive effects on PTPase stimulation, suggesting dual SH2 domain occupancy. The relative effects of the phosphotyrosine analogue difluoromethylene phosphonophenylalanine (F(2)Pmp) compared to those of Pmp were also examined. It was found that the F(2)Pmp analogue showed slightly enhanced PTPase stimulation compared with the Pmp analogue, consistent with its higher affinity for SH2 domains. Taken together with the bis-Pmp studies, these data suggest that double phosphorylation of the SHP-2 C-terminus could give rise to a 9-fold overall PTPase activation, 30-50% of the value associated with deletion of the SH2 domains. Catalytically inactive forms of phosphorylated SHP-2 proteins were also produced by expressed protein ligation. This allowed for a systematic analysis of intermolecular autodephosphorylation of SHP-2, which revealed how conformational plasticity can modulate phosphotyrosine stability.  相似文献   

14.
Endothelial repair to reestablish structural integrity following wounding is a complex process. Since the actin cytoskeleton undergoes specific changes in distribution as quiescent endothelial cells switch to activated migrating cells over a 6-h period following wounding (Lee et al. 1996), we studied tyrosine phosphorylation in association with actin microfilaments and adhesion proteins using double immunofluorescent confocal microscopy. We showed that in a confluent monolayer phosphotyrosine localized at the periphery of the cell at vinculin cell-cell adhesion sites within the actin-dense peripheral band (DPB) and centrally at talin/vinculin cell-substratum adhesion sites at the ends of central microfilaments. Over a period of 6 h following in vitro wounding there was a reduction of peripheral phosphotyrosine associated with the loss of both cell-cell adhesion sites and the DPB (stage I). Concomitantly, an increase in central phosphotyrosine was associated with an increase in cell-substratum adhesion sites and central microfilaments parallel to the wound edge (stage II), which subsequently redistributed perpendicular to the wound edge (stage III). We also localized FAK and paxillin at the ends of parallel and perpendicular central microfilaments. Immunoprecipitation of paxillin showed increased phosphotyrosine and protein levels when prominent central microfilaments were present and underwent remodeling. Inhibition of tyrosine kinases by genistein and tyrosine phosphatases by sodium orthovanadate resulted in reduced endothelial repair associated with disruption of adhesion site formation and central microfilament formation/redistribution in each stage of repair. We suggest that tyrosine phosphorylation of adhesion proteins, such as paxillin, may be important in regulating the early stages of endothelial wound repair. Received: 22 March 1999 / Accepted: 24 March 1999  相似文献   

15.
在酪氨酸磷酸化蛋白质组学的研究过程中,酪氨酸磷酸化位点的富集是最重要的一步。目前常用的富集方法是抗体亲和富集或SH2 superbinder富集。此外,通过质谱与生物信息学等技术,可实现大规模酪氨酸磷酸化位点的鉴定。对酪氨酸磷酸化蛋白质组学进行深度覆盖研究,揭示癌症发生发展过程中失调的激酶,将有助于深入理解癌症的发生发展过程;且由于75%的致癌基因是酪氨酸激酶基因,酪氨酸激酶抑制剂作为抗癌药物受到了越来越多的关注。应用酪氨酸磷酸化蛋白质组学技术,可以鉴定与癌症等重大疾病相关的酪氨酸激酶,从而帮助找到酪氨酸激酶抑制剂。总之,酪氨酸磷酸化蛋白质组学技术可以在酪氨酸激酶鉴定、酪氨酸激酶抑制剂研究及酪氨酸磷酸化信号通路研究等生物医学领域中得到很好的应用。  相似文献   

16.
Shc family proteins serve as phosphotyrosine adaptor molecules in various receptor-mediated signaling pathways. In mammals, three distinct Shc genes have been described that encode proteins characterized by two phosphotyrosine-interaction modules, an amino-terminal phosphotyrosine binding (PTB) domain and a carboxy-terminal Src homology 2 domain. Here, we report the analysis of an uncharacterized fourth Shc family protein, ShcD/Shc4, that is expressed in adult brain and skeletal muscle. Consistent with this expression pattern, we find that ShcD can associate via its PTB domain with the phosphorylated muscle-specific kinase (MuSK) receptor tyrosine kinase and undergo tyrosine phosphorylation downstream of activated MuSK. Interestingly, additional sites of tyrosine phosphorylation, including a novel Grb2 binding site, are present on ShcD that are not found in other Shc family proteins. Activation of MuSK upon agrin binding at the neuromuscular junction (NMJ) induces clustering and tyrosine phosphorylation of acetylcholine receptors (AChRs) required for synaptic transmission. ShcD is coexpressed with MuSK in the postsynaptic region of the NMJ, and in cultured myotubes stimulated with agrin, expression of ShcD appears to be important for early tyrosine phosphorylation of the AChR. Thus, we have characterized a new member of the Shc family of docking proteins, which may mediate a specific aspect of signaling downstream of the MuSK receptor.  相似文献   

17.
Bcr/Abl is a fusion oncoprotein that is of paramount importance in chronic myelogenous leukemia and acute lymphocytic leukemia. The tyrosine-phosphorylated fraction of the p185 form of Bcr/Abl was isolated by immunoprecipitation with an anti-phosphotyrosine antibody and SDS-PAGE. The tryptic digest of the gel-separated protein was prefractionated on POROS R2/OLIGO R3 microcolumns and subjected to phosphotyrosine mapping by precursor ion scanning in positive ion mode utilizing the immonium ion of phosphotyrosine, also called phosphotyrosine-specific immonium ion scanning, on a quadrupole time-of-flight tandem mass spectrometer. In total, nine different phosphorylated tyrosine residues were unambiguously localized in 12 different precursor ions. These phosphorylation sites correspond to three previously described phosphotyrosine residues and six novel tyrosine phosphorylation sites, and most of them were not predicted by the phosphorylation motif prediction programs ProSite, NetPhos, or ScanSite. This study shows the power of phosphotyrosine-specific immonium ion scanning for sensitive phosphotyrosine mapping when limited amounts of samples are available.  相似文献   

18.
Dok-1 is an adaptor protein that is a substrate for Bcr-Abl and other tyrosine protein kinases. The presence of pleckstrin homology and phosphotyrosine binding domains as well as multiple tyrosine phosphorylation sites suggests that Dok-1 is involved in protein-protein and/or protein-lipid interactions. Here we show that stimulation of Mo7 hematopoietic cells with c-Kit ligand (KL) induces phosphatidylinositol (PI) 3-kinase-dependent tyrosine phosphorylation and membrane recruitment of Dok-1. Addition of the K-Ras membrane-targeting motif to Dok-1 generated a constitutively membrane-bound Dok-1 protein whose tyrosine phosphorylation was independent of PI 3-kinase. Membrane localization of Dok-1 was required for its ability to function as a negative regulator of cell proliferation. Additional experiments revealed that Dok-1 associated with the juxtamembrane region and C-terminal tail of c-Kit. Lyn promoted phosphorylation of c-Kit and association of c-Kit and Dok-1. Both Lyn and Tec were capable of phosphorylating Dok-1. However, the use of primary bone marrow mast cells from normal and Lyn-deficient mice demonstrated that Lyn is required for KL-dependent Dok-1 tyrosine phosphorylation. Taken together, these data indicate that activation of PI 3-kinase by KL promotes binding of the Dok pleckstrin homology domain and Dok-1 recruitment to the plasma membrane where Dok-1 is phosphorylated by Src and/or Tec family kinases.  相似文献   

19.
Tyrosine protein kinases have been shown to be functionally involved in regulation of cellular signalling, proliferation and transformation. The activity of tyrosine protein kinases is counterbalanced by phospho tyrosine phosphatases that maintain constitutively low levels of protein phosphotyrosine in most cells. In this study the effect of N-ethylmaleimide on the protein tyrosine phosphorylation was tested in Jurkat T-cells. Treatment of intact cells for 5-10 mins with 50-100 microM N-ethylmaleimide resulted in a dramatic increase in phosphorylation on tyrosine residues. Phosphoaminoacid analysis revealed an up to ten-fold increase in the content of phosphotyrosine. N-ethylmaleimide blocked the phospho tyrosine phosphatases activity of immunoprecipitated CD45 while in a kinase assay N-ethylmaleimide did not affect the 32P-gamma-ATP phosphorylation of substrates. The N-ethylmaleimide-induced hyperphosphorylation was reversed by treatment with 2 mM dithiotreitol. It is concluded that N-ethylmaleimide offers a novel useful tool for identification of substrates for tyrosine protein kinases and for studies on phosphotyrosine-dependent protein interactions.  相似文献   

20.
Immunoaffinity profiling of tyrosine phosphorylation in cancer cells   总被引:2,自引:0,他引:2  
Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号