首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Sexual selection in the form of sperm competition is a major explanation for small size of male gametes. Can sexual selection in polyandrous species with reversed sex roles also lead to reduced female gamete size? Comparative studies show that egg size in birds tends to decrease as a lineage evolves social polyandry. Here, a quantitative genetic model predicts that female scrambles over mates lead to evolution of reduced female gamete size. Increased female mating success drives the evolution of smaller eggs, which take less time to produce, until balanced by lowered offspring survival. Mean egg size is usually reduced and polyandry increased by increasing sex ratio (male bias) and maximum possible number of mates. Polyandry also increases with the asynchrony (variance) in female breeding start. Opportunity for sexual selection increases with the maximum number of mates but decreases with increasing sex ratio. It is well known that parental investment can affect sexual selection. The model suggests that the influence is mutual: owing to a coevolutionary feedback loop, sexual selection in females also shapes initial parental investment by reducing egg size. Feedback between sexual selection and parental investment may be common.  相似文献   

3.
Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.  相似文献   

4.
Socio-sexual environment can have critical impacts on reproduction and survival of animals. Consequently, they need to prepare themselves by allocating more resources to competitive traits that give them advantages in the particular social setting they have been perceiving. Evidence shows that a male usually raises his investment in sperm after he detects the current or future increase of sperm competition because relative sperm numbers can determine his paternity share. This leads to the wide use of testis size as an index of the sperm competition level, yet testis size does not always reflect sperm production. To date, it is not clear whether male animals fine-tune their resource allocation to sperm production and other traits as a response to social cues during their growth and development. Using a polygamous insect Ephestia kuehniella, we tested whether and how larval social environment affected sperm production, testis size, and body weight. We exposed the male larvae to different juvenile socio-sexual cues and measured these traits. We demonstrate that regardless of sex ratio, group-reared males produced more eupyrenes (fertile and nucleate sperm) but smaller testes than singly reared ones, and that body weight and apyrene (infertile and anucleate sperm) numbers remained the same across treatments. We conclude that the presence of larval social, but not sexual cues is responsible for the increase of eupyrene production and decrease of testis size. We suggest that male larvae increase investment in fertile sperm cells and reduce investment in other testicular tissues in the presence of conspecific juvenile cues.  相似文献   

5.
While early models of ejaculate allocation predicted that both relative testes and ejaculate size should increase with sperm competition intensity across species, recent models predict that ejaculate size may actually decrease as testes size and sperm competition intensity increase, owing to the confounding effect of potential male mating rate. A recent study demonstrated that ejaculate volume decreased in relation to increased polyandry across bushcricket species, but testes mass was not measured. Here, we recorded testis mass for 21 bushcricket species, while ejaculate (ampulla) mass, nuptial gift mass, sperm number and polyandry data were largely obtained from the literature. Using phylogenetic-comparative analyses, we found that testis mass increased with the degree of polyandry, but decreased with increasing ejaculate mass. We found no significant relationship between testis mass and either sperm number or nuptial gift mass. While these results are consistent with recent models of ejaculate allocation, they could alternatively be driven by substances in the ejaculate that affect the degree of polyandry and/or by a trade-off between resources spent on testes mass versus non-sperm components of the ejaculate.  相似文献   

6.
Game theory predicts that investment in spermatogenesis will increase with the risk and intensity of sperm competition. Widespread support for this prediction has come from comparative studies of internal fertilizing species reporting positive associations between testes mass and the probability that females mate with more than one male. Data for external fertilizers have generated conflicting results. We investigated how risk of sperm competition affects testes size in two families of Australian frogs: the Myobatrachidae and the Hylidae. We also examined effects of clutch size, egg size and oviposition location as alternative factors that might influence sperm production. Species were ranked according to probability of group spawning, and hence risk of sperm competition. Controlling for body size and phylogenetic relationships, we demonstrated that within the Myobatrachidae, the risk of sperm competition explained a significant amount of variation in testes mass. Oviposition location had a weak influence, with species ovipositing into foam having smaller testes. No significant effects of clutch size or egg size were detected. In hylids, the relationship between testes mass and risk of sperm competition was positive but not significant, again with no predictable effects related to egg size or number. These data provide an important test of sperm competition theory for externally fertilizing taxa.  相似文献   

7.
Theory predicts that males should increase overall investment in ejaculate expenditure with increasing levels of sperm competition. Since ejaculate production is costly, we may expect males to tailor their reproductive investment according to anticipated levels of sperm competition. Here, we investigate plasticity in ejaculate investment in response to cues of population average levels of sperm competition in a promiscuous mammal, the bank vole (Myodes glareolus). We manipulated the social experience of experimental subjects during sexual development via differential exposure to the odour of rival males, to simulate conditions associated with relatively high or low average levels of sperm competition. Males exposed to a high level of competition developed larger major accessory reproductive glands (seminal vesicles) than those that experienced a low level of competition, suggesting that an increased investment in the production of copulatory plugs and/or mating rate may be beneficial at relatively high sperm competition levels. However, investment in sperm production, testis size and sperm motility were not altered according to social experience. Our findings emphasize the importance of non-sperm components of the ejaculate in mammalian postcopulatory sexual selection, and add to the growing evidence linking plasticity in reproductive traits to social cues of sperm competition.  相似文献   

8.
In parasitoids, the size of the adult is influenced by the size and quality of the host in which it develops. Body size is generally positively correlated with several adult fitness proxies (fecundity, longevity, and mating capacity). The initial resources available to an individual can influence gamete production (sperm and oocytes), and the number and quality of gametes produced directly influence the expected fitness of both males and females. Gamete production in relation to adult body size was quantified in Trichogramma euproctidis (Girault) (Hymenoptera: Trichogrammatidae), a short‐lived egg parasitoid of lepidopteran species. To avoid host quality variation, male and female parasitoids of different body sizes were produced using superparasitism by allowing mated and virgin female parasitoids to oviposit on Trichoplusia ni Hübner (Lepidoptera: Noctuidae) eggs. Seminal vesicles and ovaries of their offspring were dissected to count oocytes and to measure sperm length and oocytes volume. Tibia length was also measured to estimate body size. The number of oocytes, volume of oocytes, maternal investment index [= (number of oocytes × mean volume of oocytes)/10 000] and sperm length were all significantly positively correlated to body size. These results show that initial resources acquired during larval stage induce phenotypic plasticity in gamete production in both male and female T. euproctidis. Whereas number of sperm and oocytes can influence the fitness of males and females through increased mating capacity and fecundity, variation in gamete size (sperm length and oocyte volume) could also affect the fitness of an individual through sperm and larval competition.  相似文献   

9.
Comparative studies documenting a relationship between male gonadal investment and the degree of sperm competition (SC) have usually considered the association between these traits to be driven by qualitative differences in the mating system, such as whether spawning occurs in pairs or groups. However, ecological and demographic differences between conspecific populations may also generate variation in the importance of SC that can drive the evolution of male gonadal investment. In this study, we examined whether variation in population density, which is predicted to influence the level of SC in many animals, is correlated with male gonadal investment among populations of the least killifish, Heterandria formosa, a species with internal fertilization in which multiple mating is common. We complemented this field study by testing whether males respond plastically to experimentally increased levels of SC by increasing investment in testis. This experiment involved two treatments. In the first, we eliminated the potential for sperm competition (NSC) by housing a single male with a single female. In the second, we created a high risk of SC by housing five males with two females. In the field survey, we found significant differences among populations in density and relative testis mass. However, there was no evidence for a correlation between population density and relative testis mass. In our lab experiment, males did not adjust their gonadal investment in response to experiencing different levels of SC for 4 weeks. Our combined results indicate that gonadal investment in male H. formosa is not related to variation in population density.  相似文献   

10.
Genetic correlations between male and female traits can act as evolutionary constraints and, if involving reproductive traits, potentially influence sexual selection. Artificial selection on egg size in the tropical butterfly Bicyclus anynana has yielded highly divergent lines. Here we report evidence for correlated evolution in male traits. Males from the large-egg selected lines produced significantly heavier spermatophores independent of body size and tended to have more fertile sperm stored in their reproductive tracts than those from the small-egg selected lines. This may be due to an underlying genetic correlation in reproductive effort between the sexes. However, non-fertile sperm number and testis size remained unaffected by selection on egg size. Phenotypic correlations within an unselected population revealed that spermatophore mass and fertile sperm number, but not testis size and non-fertile sperm number, were positively related to male body size, and that larger spermatophores contained more fertile, but not non-fertile sperm. In addition, males provided larger females with bigger spermatophores and more fertile sperm, indicating males may be exercising mate choice during copulation.  相似文献   

11.
Sperm morphometry is extremely variable across species, but a general adaptive explanation for this diversity is lacking. As sperm must function within the female, variation in sperm form may be associated with variation in female reproductive tract morphology. We investigated this and other potential evolutionary associations between male and female reproductive characters across the Scathophagidae. Sperm length was positively associated with the length of the spermathecal (sperm store) ducts, indicating correlated evolution between the two. No association was found between sperm length and spermathecal size. However, the size of the spermathecae was positively associated with testis size indicating co-evolution between male investment in sperm production and female sperm storage capacity. Furthermore, species with a higher degree of polyandry (larger testes) had longer spermathecal ducts. However, no associations between sperm length or length variation and testis size were found which suggests greater sperm competition sensu stricto does not select for longer sperm.  相似文献   

12.
Life‐history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size.  相似文献   

13.
Theoretical models of sperm competition predict how males should allocate sperm and seminal fluid components to ejaculates according to their mating role (dominant vs. subordinate). Here, we present a detailed analysis of ejaculate expenditure according to male roles in the bank vole (Myodes glareolus). Sperm competition occurs regularly in this species, and dominant males typically achieve higher fertilization success than subordinates. Contrary to theoretical predictions, we found that dominant male bank voles invest more sperm per ejaculate than subordinates, both absolutely and relative to body and testes mass. The testes of dominant males were also absolutely (although not relatively) larger than those of subordinates. However, we found no evidence that subordinate males compensate for lower sperm numbers per ejaculate by increasing ejaculation frequency or sperm velocity. Similarly, we found no evidence for differential investment in copulatory plug size according to male roles in sperm competition, although dominant males had significantly larger seminal vesicles (both absolutely and relative to body mass) compared with subordinates. We conclude that sperm competition roles can have significant but unexpected influences on ejaculate investment in mammals with clearly defined differences in male social status.  相似文献   

14.
Mi ZP  Liao WB  Jin L  Lou SL  Cheng J  Wu H 《Zoological science》2012,29(6):368-372
Theory predicts that the degree of testes asymmetry should be positively correlated with male body condition in species with directional testis asymmetry. We tested this prediction in Rhacophorus omeimontis, a species in which females mate with more than one male. Our results showed that the treefrogs did not exhibit the absence of directional asymmetry in testis size, but rather the occurrence of fluctuating asymmetry. Moreover, we also tested differences in body size, body mass, testis mass, testis asymmetry, and sperm size among initially paired, jointly paired, and unpaired males. We found that body size and mass, testis mass, testis asymmetry and sperm length did not differ among the three male types. Testis mass showed a positive relationship with soma mass, but the correlations between the extent of fluctuating testis asymmetry and sperm length, and between testis mass and sperm length were not significant. Our data suggest that testes size and sperm length do not play an important role in determining male mating success in the presence of sperm competition.  相似文献   

15.
Environmental influences on the gametic investment of yellow dung fly males   总被引:2,自引:2,他引:0  
The energetic investment per spermatozoon and in spermatogenesis is central to a male's reproductive strategy. Relatively little, however, is known about environmental influences on variation in male allocation decisions and associated trade-offs. Plasticity in sperm length and testis size in response to variable food and temperature conditions either before or after adult eclosion was investigated in Scathophaga stercoraria, a classic model organism for sperm competition. Both measures showed interesting and clear environmental effects and also a heritable component. Testis length, and thus presumably sperm production, showed a hypoallometric (b < 1), but non-linear increase with body size, indicating that the allometric relationship changed with size. Like body size, testis length decreased with increasing developmental temperatures, but also showed a complex cubic relationship with adult temperatures. In contrast, sperm length increased or showed a negative quadratic relationship with increasing temperatures. The increase of within-male variation in sperm length with increasing developmental temperature and decreasing adult food indicates that some of our treatments were stressful. Nevertheless, there was no evidence of a trade-off between testis size and sperm length. The missing effect of adult or larval food availability on testis and sperm length, despite strong effects of larval food on body size, suggests that investment into reproduction is less sensitive to food restriction than investment into growth.  相似文献   

16.
Cooperatively breeding animals, in which helpers may participatein reproduction with dominant breeders, are ideal species forexamining intraspecific variation in testis size because theyoften exhibit both monogamous breeding (low risk of sperm competition)and polyandrous breeding (high risk) within a population. However,little is known about testis investment as a result of spermcompetition in these animals. The substrate-brooding cichlidfish Julidochromis ornatus has a cooperatively breeding system,in which some males mate monogamously and other males reproduceas dominant breeders or helpers within cooperatively breedinggroups, in which male helpers frequently sire young. We examinedthe relationship between testis investment and male social statusin relation to the risk of sperm competition. As predicted fromsperm competition models, in groups with male helpers, boththe male breeders and the male helpers invested more in testesmass, compared to breeding males without male helpers. We alsofound a positive relationship between the testes mass of malebreeders and their male helpers, suggesting that males increasetheir investment in reproductive capability under the risk ofsperm competition. Sperm competition models also predict thatlarger testes are associated with increased siring success.Our paternity analysis supported this prediction; we found apositive relationship between testis investment by male helpersand the number of offspring they sired.  相似文献   

17.
Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.  相似文献   

18.
Comparative analyses suggest that a variety of factors influence the evolution of sexual dimorphism in birds. We analyzed the relative importance of social mating system and sperm competition to sexual differences in plumage and body size (mass and tail and wing length) of more than 1,000 species of birds from throughout the world. In these analyses we controlled for phylogeny and a variety of ecological and life-history variables. We used testis size (corrected for total body mass) as an index of sperm competition in each species, because testis size is correlated with levels of extrapair paternity and is available for a large number of species. In contrast to recent studies, we found strong and consistent effects of social mating system on most forms of dimorphism. Social mating system strongly influenced dimorphism in plumage, body mass, and wing length and had some effect on dimorphism in tail length. Sexual dimorphism was relatively greater in species with polygynous or lekking than monogamous mating systems. This was true when we used both species and phylogenetically independent contrasts for analysis. Relative testis size was also related positively to dimorphism in tail and wing length, but in most analyses it was a poorer predictor of plumage dimorphism than social mating system. There was no association between relative testis size and mass dimorphism. Geographic region and life history were also associated with the four types of dimorphism, although their influence varied between the different types of dimorphism. Although there is much interest in the effects of sperm competition on sexual dimorphism, we suggest that traditional explanations based on social mating systems are better predictors of dimorphism in birds.  相似文献   

19.
Sperm competition and the evolution of gamete morphology in frogs   总被引:7,自引:0,他引:7  
Despite detailed knowledge of the ultrastructure of spermatozoa, there is a paucity of information on the selective pressures that influence sperm form and function. Theoretical models for both internal and external fertilizers predict that sperm competition could favour the evolution of longer sperm. Empirical tests of the external-fertilization model have been restricted to just one group, the fishes, and these tests have proved equivocal. We investigated how sperm competition affects sperm morphology in externally fertilizing myobatrachid frogs. We also examined selection acting on egg size, and covariation between sperm and egg morphology. Species were ranked according to probability of group spawning and hence risk of sperm competition. Body size, testis size and oviposition environment may also influence gamete traits and were included in our analyses. After controlling for phylogenetic relationships between the species examined, we found that an increased risk of sperm competition was associated with increased sperm head and tail lengths. Path analysis showed that sperm competition had its greatest direct effect on sperm tail length, as might be expected under selection resulting from competitive fertilization. Sperm competition did not influence egg size. Oviposition location had a strong influence on egg size and a weak influence on sperm length, with terrestrial spawners having larger gametes than aquatic spawners. Our analysis revealed significant correlated evolution between egg morphology and sperm morphology. These data provide a conclusive demonstration that sperm competition selects for increased sperm length in frogs, and evidence for evolutionary covariance between aspects of male and female gamete morphology.  相似文献   

20.
In polyandrous mating systems, sperm competition and cryptic female choice (CFC) are well recognized as postcopulatory evolutionary forces. However, it remains challenging to separate CFC from sperm competition and to estimate how much CFC influences insemination success because those processes usually occur inside the female's body. The Japanese pygmy squid, Idiosepius paradoxus, is an ideal species in which to separate CFC from sperm competition because sperm transfer by the male and sperm displacement by the female can be observed directly at an external location on the female's body. Here, we counted the number of spermatangia transferred to, removed from, and remaining on the female body during single copulation episodes. We measured behavioral and morphological characteristics of the male, such as duration of copulation and body size. Although males with larger body size and longer copulation time were capable of transferring larger amounts of sperm, females preferentially eliminated sperm from males with larger body size and shorter copulation time by spermatangia removal; thus, CFC could attenuate sperm precedence by larger males, whereas it reinforces sperm precedence by males with longer copulation time. Genetic paternity analysis revealed that fertilisation success for each male was correlated with remaining sperm volume that is adjusted by females after copulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号