首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The development of inexpensive small flow cytometers is recognized as an important goal for many applications ranging from medical uses in developing countries for disease diagnosis to use as an analytical platform in support of homeland defense. Although hydrodynamic focusing is highly effective at particle positioning, the use of sheath fluid increases assay cost and reduces instrument utility for field and autonomous remote operations. METHODS: This work presents the creation of a novel flow cell that uses ultrasonic acoustic energy to focus small particles to the center of a flowing stream for analysis by flow cytometry. Experiments using this flow cell are described wherein its efficacy is evaluated under flow cytometric conditions with fluorescent microspheres. RESULTS: Preliminary laboratory experiments demonstrate acoustic focusing of flowing 10-microm latex particles into a tight sample stream that is approximately 40 microm in diameter. Prototype flow cytometer measurements using an acoustic-focusing flow chamber demonstrated focusing of a microsphere sample to a central stream approximately 40 microm in diameter, yielding a definite fluorescence peak for the microspheres as compared with a broad distribution for unfocused microspheres. CONCLUSIONS: The flow cell developed here uses acoustic focusing, which inherently concentrates the sample particles to the center of the sample stream. This method could eliminate the need for sheath fluid, and will enable increased interrogation times for enhanced sensitivity, while maintaining high particle-analysis rates. The concentration effect will also enable the analysis of extremely dilute samples on the order of several particles per liter, at analysis rates of a few particles per second. Such features offer the possibility of a truly versatile low-cost portable flow cytometer for field applications.  相似文献   

2.
Biotinylated fluorescent microspheres have been developed as a reagent for studying antigens and receptors expressed at the cell surface. Labeling of antigen or receptor was accomplished by crosslinking biotinylated microspheres through streptavidin to corresponding biotinylated antibodies or ligands. Detection of labeled cells by flow microfluorimetry provided an extremely sensitive means for the analysis and potential manipulation of heterogeneous cell populations. The data indicate that cells bearing fewer than 200 surface antigen-antibody complexes per cell are readily detectable by this approach. Crosslinked to a selected biotinylated peptide immunogen, biotinylated fluorescent microspheres also allowed the labeling and detection of hybridoma cells bearing antigen-specific surface immunoglobulin.  相似文献   

3.
Neutron activation is an accurate analytic method in which trace quantities of isotopes of interest in a sample are activated and the emitted radiation is measured with high-resolution detection equipment. This study demonstrates the application of neutron activation for the measurement of myocardial perfusion using stable isotopically labeled microspheres. Stable labeled and standard radiolabeled microspheres (15 microm) were coinjected in an in vivo rabbit model of myocardial ischemia and reperfusion. Radiolabeled microspheres were detected with a standard gamma-well counter, and stable labeled microspheres were detected with a high-resolution Ge detection after neutron activation of the myocardial and reference blood samples. Regional myocardial blood flow was calculated from the deposition of radiolabeled and stable labeled microspheres. Both sets of microspheres gave similar measurements of regional myocardial blood flow over a wide range of flow with a high linear correlation (r = 0.95-0.99). Neutron activation is capable of detecting a single microsphere in an intact myocardial sample while providing simultaneous quantitative measurements of multiple isotope labels. This high sensitivity and capability for measuring perfusion in intact tissue are advantages over other techniques, such as optical detection of microspheres. Neutron activation also can provide an effective method for reducing the production of low-level radioactive waste generated from biomedical research. Further applications of neutron activation offer the potential for measuring other stable labeled compounds, such as fatty acids and growth factors, in conjunction with microsphere measured flow, providing the capability for simultaneous measurement of regional metabolism and perfusion.  相似文献   

4.
Microsphere experiments are useful in measuring regional organ perfusion as well as heterogeneity of blood flow within organs and correlation of perfusion between organ pieces at different time points. A 400 microspheres/piece "rule" is often used in planning experiments or to determine whether experiments are valid. This rule is based on the statement that 400 microspheres must lodge in a region for 95% confidence that the observed flow in the region is within 10% of the true flow. The 400 microspheres precision rule, however, only applies to measurements of perfusion to a single region or organ piece. Examples, simulations, and an animal experiment were carried out to show that good precision for measurements of heterogeneity and correlation can be obtained from many experiments with <400 microspheres/piece. Furthermore, methods were developed and tested for correcting the observed heterogeneity and correlation to remove the Poisson "noise" due to discrete microsphere measurements. The animal experiment shows adjusted values of heterogeneity and correlation that are in close agreement for measurements made with many or few microspheres/piece. Simulations demonstrate that the adjusted values are accurate for a variety of experiments with far fewer than 400 microspheres/piece. Thus the 400 microspheres rule does not apply to many experiments. A "rule of thumb" is that experiments with a total of at least 15,000 microspheres, for all pieces combined, are very likely to yield accurate estimates of heterogeneity. Experiments with a total of at least 25,000 microspheres are very likely to yield accurate estimates of correlation coefficients.  相似文献   

5.
Microencapsulation within hydrogel microspheres holds much promise for drug and cell delivery applications. Synthetic hydrogels have many advantages over more commonly used natural materials such as alginate, however their use has been limited due to a lack of appropriate methods for manufacturing these microspheres under conditions compatible with sensitive proteins or cells. This study investigated the effect of flow rate and voltage on size and uniformity of the hydrogel microspheres produced via submerged electrospray combined with UV photopolymerization. In addition, the mechanical properties and cell survival within microspheres was studied. A poly(vinyl alcohol) (PVA) macromer solution was sprayed in sunflower oil under flow rates between 1-100 μL/min and voltages 0-10 kV. The modes of spraying observed were similar to those previously reported for electrospraying in air. Spheres produced were smaller for lower flow rates and higher voltages and mean size could be tailored from 50 to 1,500 μm. The microspheres exhibited a smooth, spherical morphology, did not aggregate and the compressive modulus of the spheres (350 kPa) was equivalent to bulk PVA (312 kPa). Finally, L929 fibroblasts were encapsulated within PVA microspheres and showed viability >90% after 24 h. This process shows great promise for the production of synthetic hydrogel microspheres, and specifically supports encapsulation of cells.  相似文献   

6.
To transform the linear fluorescence intensity scale obtained with fluorescent microspheres to an antibody bound per cell (ABC) scale, a biological cell reference material is needed. Optimally, this material should have a reproducible and tight ABC value for the expression of a known clinical reference biomarker. In this study, we characterized commercially available cryopreserved peripheral blood mononuclear cells (PBMCs) and two lyophilized PBMC preparations, Cyto-Trol and PBMC-National Institute for Biological Standard and Control (NIBSC) relative to freshly prepared PBMC and whole blood samples. It was found that the ABC values for CD4 expression on cryopreserved PBMC were consistent with those of freshly obtained PBMC and whole blood samples. By comparison, the ABC value for CD4 expression on Cyto-Trol is lower and the value on PBMC-NIBSC is much lower than those of freshly prepared cell samples using both conventional flow cytometry and CyTOF? mass cytometry. By performing simultaneous surface and intracellular staining measurements on these two cell samples, we found that both cell membranes are mostly intact. Moreover, CD4(+) cell diameters from both lyophilized cell preparations are smaller than those of PBMC and whole blood. This could result in steric interference in antibody binding to the lyophilized cells. Further investigation of the fixation effect on the detected CD4 expression suggests that the very low ABC value obtained for CD4(+) cells from lyophilized PBMC-NIBSC is largely due to paraformaldehyde fixation; this significantly decreases available antibody binding sites. This study provides confirmation that the results obtained from the newly developed mass cytometry are directly comparable to the results from conventional flow cytometry when both methods are standardized using the same ABC approach.  相似文献   

7.
Survival and blood flow evaluation of canine venous flaps   总被引:2,自引:0,他引:2  
Using a canine model, we compared postoperative viability of saphenous venous flaps, cephalic venous flaps, and composite-tissue grafts without vascular connections. Of the saphenous flaps, 14 percent survived. Of the flaps based on the cephalic vein, 75 percent survived. Cephalic composite-tissue grafts were 13 percent successful. The presence of a more intricate venous plexus in a flap seems to increase its chances of success. Arterial injections of radioisotope-labeled microspheres were used to chart revascularization in cephalic flaps. These flaps demonstrated arterial blood flow by day 3, while the composite grafts showed no flow until day 7. Venous injections of microspheres distal to the flap were used to test vein-to-capillary blood flow. No significant entrapment of microspheres within the flaps occurred at any time, suggesting such flow to be inadequate.  相似文献   

8.
The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with the recombinant P-selectin glycoprotein ligand-1 construct 19.ek.Fc. We compared the adhesion of the 19.ek.Fc microspheres to P-selectin under in vitro flow conditions. We found that 1) at relatively high shear, the rate of attachment of the 19.ek.Fc microspheres decreased with increasing microsphere diameter whereas, at a lower shear, the rate of attachment was not affected by the microsphere diameter; 2) the shear stress required to set in motion a firmly adherent 19.ek.Fc microsphere decreased with increasing microsphere diameter; and 3) the rolling velocity of the 19.ek.Fc microspheres increased with increasing microsphere diameter. These results suggest that attachment, rolling, and firm adhesion are functions of particle diameter and provide experimental proof for theoretical models that indicate a role for cell diameter in adhesion.  相似文献   

9.
Ovaries from hamsters on each day of the oestrous cycle at 09.00 h were observed for the number of mast cells, the pattern of mast cell degranulation, histamine concentration and blood flow. On day 4 (pro-oestrus), ovaries were also observed at 9.00, 15.00 and 21.00 h. Mast cell degranulation was evaluated by 3 criteria: (1) no degranulation = less than 5 granules dispersed from the cell; (2) moderate degranulation = 5 or more granules dispersed but less than 15, and (3) extensive degranulation = 15 or more granules released. Blood flow was determined using radio-active microspheres in anaesthetized animals. Mast cells were observed in fat pad (beyond 2 mm of the bursal mesothelium), bursa (within 2 mm of the bursal mesothelium), hilum and near ovarian blood vessels (these 4 regions are collectively called the ovarian complex). The distribution of ovarian mast cells was not uniform. Most mast cells were near ovarian blood vessels (42.2%) and in the fat pad (37.2%). A moderate number of cells were in the bursal wall (20%) and only a few cells were observed in the hilum (0.64%). Mast cell number remained unchanged on days 1-4 of the cycle in each ovarian compartment. However, summation of the number of mast cells in the entire ovarian complex revealed a significant decline in number at 15.00 h on pro-oestrus. Alterations in mast cell degranulation were primarily restricted to 2 periods of the cycle (pro-oestrus and di-oestrus). An increase in moderate but not extensive degranulation was observed in only the fat pad and bursa on day 2 when compared with day 1 values. In most ovarian compartments on pro-oestrus, degranulation was higher than on any other day of the cycle. At 15.00 h on pro-oestrus, extensive degranulation in bursa, fat pad and blood vessel regions (but not hilum) coincided with an increase in ovarian histamine and decline in number of mast cells; ovarian blood flow also increased at the time but remained unchanged the remainder of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An epi-illumination design for fluorescence polarization measurements is introduced in flow cytometry with the optical axis orthogonally aligned to the cell stream. Various optical components and designs are discussed with respect to their influence on polarization measurements. Using the epi-configuration, paired measurements with the direction of polarization of the exciting light changed orthogonally are proposed for the compensation of system anisotropies and electronic mismatch. Large aperture corrections are employed for the excitation as well as for the emission pathway. Additional parameters such as fluorescence at 90 degrees, multiangle light scattering, and high precision cell-sizing by internally calibrated time of the flight measurements, as described previously, remain available with the design proposed here. Fluorescent latex microspheres, stained intracellular DNA, and algae have been used to test performance.  相似文献   

11.
A novel, h-shaped ultrasonic resonator was used to separate biological particulates. The effectiveness of the resonator was demonstrated using suspensions of the cyanobacterium, Spirulina platensis. The key advantages of this approach were improved acoustic field homogeneity, flow characteristics, and overall separation efficiency (sigma = 1 - ratio of concentration in cleared phase to input), monitored using a turbidity sensor. The novel separation concept was also effective under microgravity conditions; gravitational forces influenced overall efficiency. Separation of Spirulina at cleared flow rates of 14 to 58 L/day, as assessed by remote video recording, was evaluated under both microgravity (相似文献   

12.
Lauer SA  Nolan JP 《Cytometry》2002,48(3):136-145
BACKGROUND: For ease of purification, proteins are often expressed with a short affinity sequence of five or six adjacent histidine residues (His-tag). This His-tag binds to the metal of metal chelator complexes such as Ni(2+)-nitrilotriacetic acid (Ni-NTA) or -iminodiacetic acid (Ni-IDA). Chromatography resins bearing covalently attached metal chelator complexes are used widely for the easy affinity purification of His-tagged proteins or peptides. Because Ni-NTA microspheres were not commercially available at the beginning of our studies, we prepared and characterized such microspheres to immobilize His-tagged proteins and study their interactions. Our microspheres are of three types: (a) metal chelator complexes bound covalently to polystyrene microspheres, (b) metal chelator complexes bound covalently to silica microspheres, and (c) lipid-linked metal chelator complexes adsorbed to silica microspheres forming self-assembled bilayer membranes where the metal chelators have lateral mobility. METHODS: The microspheres bearing covalently attached Ni-chelator were synthesized by reacting a primary amine-bearing Ni-NTA ligand with carboxy-functionalized microspheres and then loading with Ni(2+). Microspheres with laterally mobile metal chelator were made by incubating glass microspheres with liposomes containing phosphatidylcholine (PC) and the metal chelating lipid 1,2-dioleoyl-sn-glycero-3-[(N (5-amino-1-carboxypentyl)iminodiacetic acid)succinyl]. Binding of a His-tagged enhanced green fluorescent protein (EGFP) was used to characterize these microspheres by flow cytometry for their specificity, sensitivity, capacity and stability. RESULTS: While all micospheres specifically bind His-tagged proteins, the conditions to achieve this are different for the polystyrene- and silica-based spheres. All three types of microspheres bind His-EGFP with saturation occurring at 30-50 nM and an apparent avidity (concentration of half-maximal binding) of approximately 1 to 2 x 10(-8) M at pH 7.4. Binding of His-EGFP is inhibited by imidazole or ethylene-diaminetetraacetic acid (EDTA). Polystyrene Ni-NTA microspheres showed significant nonspecific binding as measured by binding in the presence of imidazole or EDTA or by binding of fluorescent proteins lacking a His-tag. This nonspecific binding of proteins to and aggregation of polystyrene spheres could only be prevented by the inclusion of low concentrations of Tween 20, but not by including bovine serum albumin (BSA), polyethylene glycols, or polyvinylpyrrolidones as blocking agents. In contrast, silica-based microspheres with covalently attached Ni-NTA or silica microspheres bearing adsorbed bilayers that contain Ni-NTA-lipid showed little nonspecific binding in the presence of BSA. Our results on the stability of immobilization indicate that washing destabilizes the binding of His-tagged proteins to Ni-NTA microspheres. This binding consists of two interactions of different affinities. We also demonstrate that limited multiplexed analysis with differently sized silica microspheres bearing the Ni-NTA-lipid is feasible. CONCLUSIONS: The microspheres described are well suited to selectively immobilize His-tagged proteins to analyze their interactions by flow cytometry. The affinity and kinetic stability of the interaction of His-tagged proteins with Ni-NTA are insufficient to use Ni-NTA microspheres in multiplexed analysis formats where different His-tagged proteins are bound to distinct microspheres. Improvements towards this end (improved chelators and/or improved affinity tags) are critical for extending the use of this method. We are currently working on novel chelators to strengthen the stability of immobilization of His-tagged proteins to surfaces. Such improvements would greatly enhance the analysis of interactions of immobilized His-tagged proteins and could make the development of microsphere-based arrays with His-tagged protein/antibody possible.  相似文献   

13.
Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.  相似文献   

14.
Naiki T  Karino T 《Biorheology》2000,37(5-6):371-384
To substantiate the occurrence of flow-dependent concentration or depletion of atherogenic lipoproteins, which has been theoretically predicted to take place at a blood/endothelium boundary, we have studied the effects of perfusion pressure and wall shear rate on the accumulation and uptake of microspheres by cultured vascular endothelial cells in a monolayer. The study was carried out by flowing a cell culture medium containing fetal calf serum and fluorescent microspheres through a parallel-plate flow chamber having a cultured bovine aortic endothelial cell (BAEC) monolayer on one wall of the chamber. The microspheres had a nominal diameter of 19 nm, approximately the same as that of low-density lipoproteins, and thus served as models and tracers of plasma proteins and lipoproteins. Experiments were carried out in steady flow in the physiological range of wall shear rate and water filtration velocity at the monolayer, while monitoring the intensity of fluorescence of the spheres accumulated at and taken up by the endothelial cells. It was found that in a perfusate containing only fluorescent microspheres, due to increased phagocytic activity of the endothelial cells, the intensity of fluorescence which reflected the number of the microspheres taken up by the endothelial cells, increased almost linearly with time and independently of wall shear rate. However, with perfusates containing fetal calf serum, this abnormal phenomenon did not occur, and the intensity of fluorescence increased with increasing perfusion pressure and decreasing wall shear rate. It was also found that the number of fluorescent microspheres accumulated at and taken up by the BAEC monolayer was shear-dependent only at low wall shear rates, and increased sharply when the flow rate was reduced to zero. These results provided solid experimental evidence that flow-dependent concentration or depletion of macromolecules occurs at the luminal surface of the endothelium at physiological wall shear rates and water filtration velocities, and strongly supports the hypothesis that flow-dependent concentration polarization of lipoproteins plays an important role in the localization of atherosclerosis and intimal hyperplasia in man by facilitating the uptake of atherogenic lipoproteins by endothelial cells.  相似文献   

15.
To date microsphere-based assays in flow cytometry have focused on the detection of antibody or antigen. Most studies have been research based to evaluate the performance of the technique relative to conventional techniques. However, there have not been any carefully controlled studies of the sensitivity and specificity, as well as analytic sensitivity of the FMIA technique. As such, it is difficult to document advantages of this tecnique clearly. The data suggest that FMIA is considerably more sensitive than conventional techniques, and the ability to analyze for multiple analytes in one sample dilution is attractive. This ability to simultaneously analyze for multiple samples is primarily dependent upon the size difference as sensed by FALS of the microspheres. However, it is also possible to use microspheres of the same size but that differ in either fluorescence or RALS signal. If microspheres of the same size are used but one fluoresces red and the signal in the assay uses a green fluorochrome, then the two microspheres can be separated by their red fluorescence. Using this technique, one can increase the number of microspheres that can be used in an assay. It is also possible to use microspheres of the same size but with different abilities to scatter the incident light at right angles. The use of these microspheres is then similar to the nonfluorescent versus red microspheres. By the judicious combination of microsphere size, it is possible to easily differentiate eight different microspheres. With the addition of a fluorescebt dye and/or differences in right-angle light-scatter capabilities, the number of different microspheres that can be used simultaneously becomes quite large. In practice, the number of microspheres that can be differentiated is no doubt greater than the number of analytes that need to be assayed in one assay.Although the apparent increase in sensitivity and the ability to simultaneously detect and quantitate numerous analytes are important attributes of FMIA, there are drawbacks to this method. Although the FMIA lends itself well to one-step no-wash procedures, when wash steps are necessary they are time-consuming and ineffecient. Most wash steps in FMIA use centrifugation of the microspheres to remove them from the reagent. There is a significant loss of microspheres in these wash steps, which are time-consuming. There are studies ussing vacuum filtration of the suspension to separate the microspheres from the reagents. A number of different groups are pursuing an automated or semiautomated method for the efficient washing and reagent delivery system for FMIA. Commercial systems are being developed that may allow for the easier handling of these reagents.Numerous groups are investigating the use of microspheres and flow cytometry primarily in immunoassay development. The procedure has the advantages of the simultaneous yet discrete analysis of multiple analytes and the inherent increase in sensitivity using fluorescence over other signals. There will no doubt be wider applications  相似文献   

16.
The combination of color-coded microspheres as carriers and flow cytometry as a detection platform provides new opportunities for multiplexed measurement of biomolecules. Here, we developed a software tool capable of automated gating of color-coded microspheres, automatic extraction of statistics from all subsets and validation, normalization, and cross-sample analysis. The approach presented in this article enabled us to harness the power of high-content cellular proteomics. In size exclusion chromatography-resolved microsphere-based affinity proteomics (Size-MAP), antibody-coupled microspheres are used to measure biotinylated proteins that have been separated by size exclusion chromatography. The captured proteins are labeled with streptavidin phycoerythrin and detected by multicolor flow cytometry. When the results from multiple size exclusion chromatography fractions are combined, binding is detected as discrete reactivity peaks (entities). The information obtained might be approximated to a multiplexed western blot. We used a microsphere set with >1,000 subsets, presenting an approach to extract biologically relevant information. The R-project environment was used to sequentially recognize subsets in two-dimensional space and gate them. The aim was to extract the median streptavidin phycoerythrin fluorescence intensity for all 1,000+ microsphere subsets from a series of 96 measured samples. The resulting text files were subjected to algorithms that identified entities across the 24 fractions. Thus, the original 24 data points for each antibody were compressed to 1-4 integrated values representing the areas of individual antibody reactivity peaks. Finally, we provide experimental data on cellular protein changes induced by treatment of leukemia cells with imatinib mesylate. The approach presented here exemplifies how large-scale flow cytometry data analysis can be efficiently processed to employ flow cytometry as a high-content proteomics method.  相似文献   

17.
Poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by an oil/water emulsion solvent evaporation method to use as an injectable microcarrier for cell delivery. Three different kinds of PLGA microspheres having hydrophobic, negatively charged, and positively charged surfaces were prepared. Hydrophobic and negatively charged PLGA microspheres were prepared by using terminally capped and uncapped PLGA polymer, respectively. Positively charged PLGA microspheres were prepared by blending PLGA with PLGA-g-poly(L-lysine) graft copolymer as a surface modifying agent. Bovine chondrocytes were cultured on the three PLGA microspheres under serum conditions to comparatively evaluate cell attachment, cell proliferation, and cell function with respect to surface properties. Positively charged PLGA microspheres showed the highest cell attachment, growth, and function compared to hydrophobic and negatively charged microspheres. Surface-modified PLGA microspheres can potentially be used as an injectable delivery system for cells into a tissue defect site.  相似文献   

18.
This protocol describes an effective method for the production of spherical microtissues (microspheres), which can be used for a variety of tissue-engineering purposes. The obtained microtissues are well suited for the study of osteogenesis in vitro when multipotent stem cells are used. The dimensions of the microspheres can easily be adjusted according to the cell numbers applied in an individual experiment. Thus, microspheres allow for the precise administration of defined cell numbers at well-defined sites. Here we describe a detailed workflow for the production of microspheres using unrestricted somatic stem cells from human umbilical cord blood and adapted protocols for the use of these microspheres in histological analysis. RNA extraction methods for mineralized microtissues are specifically modified for optimum yields. The duration of running the complete protocol without preparatory cell culture but including 2 weeks of microsphere incubation, histological staining and RNA isolation is about 3 weeks.  相似文献   

19.
Vascular infusions of 15-microm-diameter microspheres are used to study pulmonary blood flow distribution. The sites of microsphere lodging and their effects on microvascular perfusion are debated but unknown. Using intravital microscopy of the subpleural surface of rat lungs, we directly observed deposition of fluorescent microspheres. In a pump-perfused lung model, approximately 0.5 million microspheres were infused over 30 s into the pulmonary artery of seven rats. Microsphere lodging was analyzed for the location in the microvasculature and the effect on local flow after lodging. On average, we observed 3.2 microspheres per 160 alveolar facets. The microspheres always entered the arterioles as singlets and lodged at the inlets to capillaries, either in alveolar corner vessels or small arterioles. In all cases, blood flow continued either around the microspheres or into the capillaries via adjacent pathways. We conclude that 15-microm-diameter microspheres, in doses in excess of those used in typical studies, have no significant impact on pulmonary capillary blood flow distribution.  相似文献   

20.
This paper demonstrates a new magnetophoretic position detection method for multiplexed immunoassay using colored microspheres as an encoding tool in a microchannel. Colored microspheres conjugated with respective capture molecules are incubated with a mixture of target analytes, followed by reaction with the probe molecules which had been conjugated with superparamagnetic nanoparticles (SMNPs). Under the magnetic field gradient, the resulting microspheres are deflected from their focused streamlines in a microchannel, and respective colored microspheres are detected using color charge-coupled device (CCD) in a specific detection region of the microchannel. The color and position of respective colored microspheres are automatically decoded and analyzed by MATLAB program, and the position was correlated with the concentration of corresponding target analytes. As a proof-of-concept, we attempted to assay simultaneously three types of biotinylated immunoglobuline Gs (IgGs), such as goat, rabbit and mouse IgGs, using colored microspheres (red, yellow and blue, respectively). As the capture molecules, corresponding anti-IgGs were employed and target analytes were probed using streptavidin-modified superparamagnetic nanoparticles. As a result, three analytes were simultaneously assayed using colored microspheres with high accuracy, and detection limits of goat IgG, rabbit IgG and mouse IgG were estimated to be 10.9, 30.6 and 12.1fM, respectively. In addition, with adjustment of the flow rate and detection zone, the dynamic range could be controlled by more than one order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号