首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic matter consumption and decomposition were studied in four experimental systems, having collected different organic substrates in the Ross Sea in December 1994. For the experimental approach selected, processes normally acting on a mixed pool of substances could be separated and the main features of each phenomenon could be focused on. Through the strict relationship between each experimental system and natural conditions shown by organic matter assessment, ectoenzymatic activity trends and their relation with Antarctic water substrates could be described. Through ice melting the water column becomes rich in large pools of substrates, as well as enzyme-producing micro-organisms, capable of quick development. The quantitative predominance of leucine-aminopeptidase throughout the year is well known, but its relative importance seems to decrease when, owing to production events, the environment is enriched with autotrophic- and heterotrophic-derived substances, leading to glycolytic enzymes expression. Thus, ectoenzymatic activity is supposed to be one of the factors responsible for organic matter variations, showing quantitative and qualitative changes depending on substrate availability. Received: 26 September 1997 / Accepted: 17 May 1998  相似文献   

2.
Xenopus laevis oocytes exhibit ectoenzymatic activity able to hydrolytically cleave extracellular diadenosine polyphosphates (Ap(n)A). The basic properties of this ectoenzyme were investigated using as substrates di-(1,N(6)-ethenoadenosine) 5',5"'-P(1),P(4)-tetraphospate [epsilon-(Ap(4)A)] and di-(1,N(6)-ethenoadenosine) 5',5"'-P(1),P(5)-pentaphospate [epsilon-(Ap(5)A)], fluorogenic derivatives of Ap(4)A and Ap(5)A, respectively. epsilon-(Ap(4)A) and epsilon-(Ap(5)A) are hydrolysed by folliculated oocytes according to hyperbolic kinetics with K(m) values of 13.4 and 12.0 microM and Vmax values of 4.8 and 5.5 pmol per oocyte per min, respectively. The ectoenzyme is activated by Ca(2+) and Mg(2+), reaches maximal activity at pH 8--9 and is inhibited by suramin. Defolliculated oocytes also hydrolyse both substrates with similar K(m) values but V(max) values are approximately doubled with respect to folliculated controls. Chromatographic analysis indicates that extracellular epsilon-(Ap(4)A) and epsilon-(Ap(5)A) are first cleaved into 1,N(6)-ethenoAMP (epsilon-AMP) + 1,N(6)-ethenoATP (epsilon-ATP) and epsilon-AMP + 1,N(6)-ethenoadenosine tetraphosphate (epsilon-Ap(4)), respectively, which are catabolized to 1,N(6)-ethenoadenosine (epsilon-Ado) as the end product by folliculated oocytes. Denuded oocytes, however, show a drastically reduced rate of epsilon-Ado production, epsilon-AMP being the main end-product of extracellular epsilon-(Ap(n)A) catabolism. Results indicate that, whereas the Ap(n)A-cleaving ectoenzyme appears to be located mainly in the oocyte, ectoenzymes involved in the dephosphorylation of mononucleotide moieties are located mainly in the follicular cell layer.  相似文献   

3.
Synaptosomes and plasma membranes obtained from rat brain display ectoenzymatic hydrolytic activity responsible for hydrolysis of the neurotransmitter/neuroregulatory nucleotides diadenosine polyphosphates. Intact synaptosomes and plasma and synaptic membranes isolated by sucrose-gradient ultracentrifugation from several brain regions (hypothalamus, hippocampus, temporal cortex, frontal cortex striatum and cerebellum) degraded the fluorogenic substrates diethenoadenosine polyphosphates up to ethenoadenosine as by-product. Purified ectoenzyme cleaved substrates always releasing the mononucleotide moieties ethenoadenosine 5'-monophosphate and the corresponding ethenoadenosine (n-1) 5'-phosphate. Ectoenzymatic hydrolysis reached maximal activity at pH 9.0 (pH range 6.5-9.0) and was activated by Ca(2+) and Mg(2+) ions, with maximal effects around 2.0 mM cation. EDTA drastically reduced activity and Zn(2+) was required for enzyme reactivation. Hydrolysis of substrates followed hyperbolic kinetics with K(m) values in the 3-10 microM range. Diadenosine polyphosphates and heparin behaved as competitive inhibitors in the enzymatic hydrolysis of diethenoadenosine polyphosphates and AMP, ATP, alpha,beta-methyleneADP, ADPbetaS ATPgammaS, beta,gamma-methyleneATP, suramin and diethyl pyrocarbonate were also inhibitors. Ectoenzymatic activity shared the typical characteristics of members of the ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family and inhibition data suggest that NPP1 ectoenzyme is involved in the cleavage of extracellular diadenosine polyphosphates in brain. Synaptic membranes from cerebellum, hypothalamus and hippocampus presented the highest activities and no activity differences were observed between young and aged animals. However, plasma membranes showed a more homogeneous distribution of ectoenzymatic activity but a general increase was detected in aged animals. Enhancement of ectoenzymatic diadenosine polyphosphate cleaving activity found in plasma membranes from old animals could play a deleterious role in aged brain by limiting neuroprotective effects reported for extracellular diadenosine tetraphosphate.  相似文献   

4.
Halomonas glaciei isolated from frazil ice in the Ross Sea (Antarctica) during austral summer 2003 was phenotypically characterized and its capability of degrading organic matter was tested. We evaluated specific bacterial growth rates (mu) to understand at which temperatures bacterial growth shows a linear and direct relationship with the available substrate (4-22 degrees C) and afterwards we tested H. glaciei growth curves and degradative potential at 0, 10 and 37 degrees C using two different media (one enriched and one depleted in PO(4)). The strain grew exponentially only at 10 degrees C. The fastest hydrolysis rates were expressed by enzymes aimed at polysaccharide degradation (alpha-d-glucosidase, beta-d-glucosidase and beta-d-galactosidase) while alkaline phosphatase and aminopeptidase activities were rather low. Our data suggest a preferential demand for carbon derived from carbohydrates rather than from proteins: ectoenzyme activities transformed into carbon mobilization from organic polymers, showed that the total carbon potentially released from polysaccharides can be almost one order of magnitude higher than the protein carbon mobilization. Principal component analysis of the enzyme affinity separated the six experimental conditions, highlighting how different physical (temperature) and chemical (PO(4) enrichment or depletion) features actively lead to a differentiation in the efficiency of the ectoenzymes produced, resulting in preferential degradation of diverse kinds of organic substrates.  相似文献   

5.
海水中胞外酶及其与赤潮发生关系研究进展   总被引:2,自引:0,他引:2  
胞外酶在水生生态系统的物质循环和能量转化过程中具有重要作用,其研究对深入了解海洋中碳的生物地球化学循环过程及赤潮藻在赤潮发生过程中的应对机制具有重要意义.本文综述了海水中胞外酶的研究方法、活性分布特征、粒径分布特征、影响调控机制及生态学意义等方面的研究进展,同时介绍胞外酶作为一项新型营养状况指标的意义.  相似文献   

6.
Ectoenzyme kinetics [alkaline phosphatase, aminopeptidase (AM), lipase, α-glucosidase, and β-glucosidase] were determined over a seasonal cycle at four stations, Little Madeira Bay (northeast), Duck Key (east), Bob Allen Key (south-central), and Whipray Basin (north-central), which represent distinct regions of Florida Bay. Spatial and temporal variations in ectoenzyme kinetics were related to biotic and abiotic drivers in order to discern potential ectoenzyme substrate sources. Generally, ectoenzyme activities were higher in the central bay and lowest in the eastern bay. One pronounced exception was AM activity, which was highest at the mangrove fringe along the northeastern bay and reflected increased contribution of organic nitrogen inputs from upstream Everglades wetlands. When ectoenzymes were normalized to bacterial abundances, these trends dissipated and highest cell-specific activities were observed consistently in the south-central region. Relationships between ectoenzyme kinetics and environmental and biological parameters were complex, but three main spatially determined differences were discernable. Ectoenzyme kinetics were controlled by phosphorus availability in the eastern bay, by organic matter availability in the south-central bay, by microbial community composition and organic matter availability in northeastern bay (wetlands transition area), and by microbial community composition in the north-central bay. These differences in enzyme kinetics further support the hypothesis of distinct microbial communities in different regions of Florida Bay and provide insight into biogeochemical cycles and the microbial food web within Florida Bay.  相似文献   

7.
We previously described a developmentally regulated, Mr 115,000 (reduced) and 110,000/128,000 (nonreduced) mouse T cell-activating molecule (THAM) also expressed on a variety of epithelial cell surfaces, and associated with neutral exoaminopeptidase activity. In the present study, we show that THAM is the mouse counterpart of the human T cell-activating ectoenzyme CD26 (dipeptidyl peptidase IV, DPP IV) and that highly purified THAM lacks neutral exoaminopeptidase activity. This conclusion is based on the following: 1) the N-terminal segments of the THAM Mr 110,000 and 128,000 components shared the same amino acid sequence with the rat DPP IV. These N-termini comprised a short intracytoplasmic tail of six residues followed by a downstream hydrophobic transmembrane segment. 2) THAM-specific mAb H194-112-Affi-Gel immunoadsorbent was capable of removing DPP IV enzymatic activity from mouse thymoma cell detergent extracts. 3) H194-112 reactivity pattern on developing thymocytes was found to parallel that previously reported for membrane-bound DPP IV enzymatic activity. The extent of THAM N-glycosylation, as measured by N-glycanase treatment of H194-112 immunoprecipitates, was found to be similar to that of human and rat DPP IV (i.e., approximately 20 kDa). Cross-linking experiments indicated that THAM was expressed at the cell surface as a dimer of approximately 220 kDa. Its two subunits were found to be structurally related but not identical as shown by their different Mr under nonreducing conditions and by their slightly distinct peptide profiles after proteolytic cleavage. We conclude from these data that DPP IV, in addition to its extracellular matrix receptor and ectoenzymatic functions, is a T cell-activating structure in both human and mouse species.  相似文献   

8.
We studied the role of oval faecal pellets in the carbon-cycle dynamics of the Antarctic coastal area in a laboratory experiment on pellet degradation over time. We observed a rapid increase in the bacterial biomass until 56 h (from 14.73 to 91.09 µgC/l), but a drop to 25.83 µgC/l at the end of the experiment. Dissolved proteins decreased rapidly (from 1,342.7 to 1,177.0 µg/l in the first 32 h) as did nitrate (from 1 to 0.43 µm in the first 56 h), confirming their consumption by microorganisms, but they were observed to increase in the second part of the experiment, up to 1,618.3 µg/l and 17.36 µm for the dissolved proteins and nitrate, respectively. The proteolytic activity increased throughout the incubation from 302.65 nmol/l per hour to 6,641.08 nmol/l per hour, especially in the second half of the experiment. Therefore, we concluded that the microbial community is able to produce, consume and remineralise the available organic substrates and to increase organic-pool quality and inorganic nutrient concentrations dissolved in the overlying water.  相似文献   

9.
Bacterioplankton abundance and activity were studied in the estuarine system of Ria de Aveiro (Portugal) to test if tidal resuspension of sediments and transport of particles from the salt marshes may act as factors of variability of bacterial communities. The total and attached cell abundance, ectoenzymatic activity and the heterotrophic metabolism of glucose, as well as seston, chlorophyll a and particulate organic carbon (POC) were monitored during four 10-h periods along the tidal cycle at four sampling sites across a transect. The variation of particulate materials (seston, POC and chlorophyll a ) along the transect was not significantly correlated with either distance to the margin or distance to the sediment surface. Nevertheless, proximity to the salt marsh or to the bottom sediment surface favoured glucose incorporation and aminopeptidase activity. A multiple stepwise linear regression analysis using temperature, salinity, seston, POC, chlorophyll a , distance to sediment surface and distance to the margin as independent variables explained 66.5% of the variability of the fraction of particle-attached bacteria and only a very small proportion (12–43%) of the observed variability of total bacterial abundance, ectoenzymatic activity and glucose utilization. The spatial patterns of variation of the concentration of particulate material (seston, POC and chlorophyll a) do not clearly indicate the occurrence of sediment resuspension and runoff from the margins. This, together with the poor contribution of these parameters to the transversal and tidal variability of bacterial activity, dismisses the importance of inputs of suspended material across the sediment/water interface and from neighbouring salt marshes in the control of bacterial density and activity.  相似文献   

10.
Significance of bacterial ectoenzymes in aquatic environments   总被引:5,自引:0,他引:5  
Chróst  R. J. 《Hydrobiologia》1992,(1):61-70
The report presents studies on temporal and spatial variations of kinetics (Vmax and Km) of bacterial ectoenzyme activity (-glucosidase - Glc, leucine aminopeptidase - Leu-amp) in the naturally eutrophic Plusee. Glc and Leu-amp activity were positively correlated with the flux of polymeric materials (polysaccharides, proteins) in the lake. Glc activity was low when algal populations grew actively, but during the algal bloom breakdown Glc activity increased rapidly. Leu-amp displayed the highest rates of activity in the epilimnion and was tightly coupled to bacterial production. The synthesis of studied ectoenzymes was under control of a repression/derepression mechanism. The significance of ectoenzymes for the transformation and bacterial utilization of organic matter, and their role in the microbial loop in aquatic environments is discussed.  相似文献   

11.
The regulation of the bacterial exoproteolytic activity, at natural substrate concentrations, was studied during the survey of an Atlantic coastal marine pond (France). The regulation of this activity occurs at two different levels: on the one hand, at the cellular level, the ectoenzyme synthesis is regulated by hydrolysis substrates, dissolved combined amino acids (DCAA), and end products, dissolved free amino acids (DFAA), in terms of the relative amounts available to the cell, and on the other hand, at the ecosystem level, i.e. the hydrolytic activity, by the total amounts of DCAA and DFAA in situ. The DFAA acts as an inhibitor in enzymatic synthesis; in contrast, dissolved proteins induce the enzymatic synthesis and the exoproteolytic activity. These results, obtained in natural concentration conditions, confirm the functioning in situ of the ectoenzymatic activity regulation model of Chróst, until now only validated in an enriched experimental medium.  相似文献   

12.
Summary The 5′-AMPase activity of the ectoenzyme 5′-nucleotidase has been measured in a variety of cell lines, using intact cells. Human cell types showed two orders of magnitude higher enzyme activity than mouse cell lines. The ectoenzyme is inhibited by adenosine 5′-(α,β-methylene) diphosphate and Concanavalin A. A different extent of 5′-nucleotidase lectin inhibition was observed in the studied cell lines, suggesting that the corresponding ectoenzymes are glycoproteins with a different type or degree, or both, of glycosylation. The 5′-nucleotidase activity increased during subculture and decreased after cell transformation. Generally, the 5′-nucleotidase activity was two-to five-fold higher in monolayer than in suspension cell culture. A relation between cell growth and 5′-AMPase activity was also observed. Enzyme activity increased at the end of the lag phase (glioblastoma cells) or during the exponential phase (the other two cell lines). After confluence, the activity decreased to the initial or even lower range of activity. Observed activity variations with cell proliferation correlate with modifications of 5′-AMPase activity during subculture. This work was supported by grant no. PR84-0359 from the Comisión Asesora de Investigación Científica y Técnica (Spain).  相似文献   

13.
Enzymatic Activity on Sandy Beaches of the Ligurian Sea (NW Mediterranean)   总被引:2,自引:0,他引:2  
Enzymatic activity was measured on two beaches of the Ligurian Sea (NW Mediterranean) during late spring and summer 2003. The detected activities (leucine aminopeptidase, β-glucosidase, α-glucosidase, and β-N-acetylglucosaminidase) were related to the available organic substrates (proteins and carbohydrates) and to the bacterial community (expressed in terms of abundance, biomass, and frequency of cell division). The very low chlorophyll a concentrations (never higher than 40 ng g−1) suggested that heterotrophic microorganisms play a major role in the beach ecosystem. Enzymatic activities devoted to organic matter degradation were lower in the emerged part of the beaches and higher in the sites covered, permanently or temporarily, by seawater, suggesting that sea action enlivens the degradation processes. Leucine aminopeptidase ranged from 0.26 to 13.02 nmol g−1h−1, and β-glucosidase (the most expressed glycolytic enzyme) from 0.03 to 4.51 nmol g−1h−1. Strong changes in the proteolytic/glycolytic activity ratio were observed, with a sudden rise in glycolysis during summer, leading to ratio values from about 30 down to 1. Thus, beaches were identified as preferential degradation sites, where very refractory compounds such as cellulose may also be efficiently processed.  相似文献   

14.
Water samples and particulate materials settling under the pack ice were collected in an ice-covered area near the Terra Nova Bay Italian Station during late summer 1995, in order to study short-term changes in the biochemical composition of particulate organic matter. At the end of the study period the phytoplankton biomass increase (up to >3.0 μg chlorophyll-a l−1) was probably related to the intrusion under the pack ice of chlorophylls-enriched surface waters coming from the near ice-free area. Such increase was associated also with a notable increase in particulate organic matter concentrations, as well as in particulate organic matter vertical fluxes (up to >100 mg C m−2 day−1). Proteins were the most abundant biochemical class of particulate organic matter (on average about 49%), followed by lipids (29%) and carbohydrates (22%). By contrast, organic matter collected in the sediment trap was characterized by the dominance of lipids (about 55% of the total biopolymeric carbon flux) over carbohydrates (28%) and proteins (17%). The hydrolizable particulate biopolymeric carbon accounted for about 23% of total biopolymeric carbon. This value was about one-half of that found in ice-free waters, suggesting that the suspended particulate organic material under the pack ice was less digestible than in ice-free waters or was already partially digested. Despite this, and the decay of labile organic compounds in the sediment trap during the deployment, material settling towards the sea bottom under the pack ice in Terra Nova Bay, owing to its high lipid content, might represent an important high-quality food source for benthic consumers. Finally, assuming as possible the intrusion under sea ice of primary organic matter-enriched waters, we hypothesize the occurrence of a “fertilization” effect deriving from ice-melting areas towards under-ice waters, supplying the latter with an additional rate of primary organic matter. Accepted: 18 February 1999  相似文献   

15.
Will Ritzrau 《Polar Biology》1997,17(3):259-267
 Heterotrophic activity and related measures of pelagic microorganisms in the Northeast Water (NEW) polynya, the largest and northernmost summer polynya in the Arctic, were studied during the Polar Sea cruise of July/August 1992 at stations spanning a range of ice conditions. Utilization (incorporation and respiration) of 14C-labelled amino acids was measured at in situ temperature as a proxy for microheterotrophic activity in samples from the chlorophyll maxima, intermediate water depths, and the benthic boundary layer. Total activity and bacterial abundance (measured by epifluorescence microscopy) were highest in the sub-zero surface water layer that dominates the northeast Greenland shelf, and particularly in areas most influenced by ice-edge processes and lateral advection. In this cold-water layer activity correlated strongly with particulate organic carbon (POC), to a lesser degree with phytoplankton-derived pigments and bacterial abundance, but not with median bacterial cell size. No significant correlations were detected in the warmer, Atlantic-influenced deep waters of the regional trough system where POC concentrations and other parameters were low. In comparison with temperate environments, pelagic heterotrophic activity in the NEW polynya appears to be low, a finding that bears upon the fate of dissolved organic matter and the efficient supply of particulate food to the benthos in this unique polar setting. Received: 3 December 1995/Accepted:29 May 1996  相似文献   

16.
1. Interstitial bacterial abundance, production and ectoenzyme activity were investigated over an annual cycle in an Austrian river when infiltration of oligotrophic river water into a river-bank was artificially enhanced. These microbial parameters were related to porewater chemistry and the concentration of particulate (POC) and dissolved organic carbon (DOC).
2. Porewater chemistry reflected the hydrodynamic mixing of infiltrating river water with riparian groundwater. Seasonal fluctuations in the microbial parameters resulted mainly from changes in temperature and organic matter supply. Seasonal change in porewater chemistry in the river-bank was detectable laterally only within the first metre of the sediment and decreased rapidly with increasing distance from the sediment–water interface.
3. The DOC concentration decreased only slightly during lateral transport through the aquifer, while total organic carbon (TOC) concentration as well as abundance and activity of interstitial bacteria were reduced by up to one order of magnitude within the top metre of the sediment. Retention of incoming particulate matter structured the lateral distribution pattern of TOC concentration. The POC and not the DOC pool was the main source of carbon for interstitial bacteria and, therefore, the quality of POC determines the distribution of microbial metabolism within the riparian zone.  相似文献   

17.
1. ,The influence of benthic algae on heterotrophic metabolism in a forested Mediterranean stream was investigated. Bacterial density and ectoenzymatic activities, as well as algal biomass (chlorophyll- a ) and metabolism (the rate of 14C incorporation), were measured during colonization over 60 days of artificial substrata (clay tiles) under light and dark conditions.
2. ,Chlorophyll- a and the rate of 14C incorporation were significantly higher in light-grown than in dark-grown biofilms. Bacterial density and ectoenzymatic activity (especially β-glucosidase) were also significantly higher in light-grown biofilms.
3. ,Regressions of chlorophyll- a and 14C incorporation values on the ectoenzymatic activities were significant. The slopes of regression lines obtained for dark-grown biofilms were significantly higher than those obtained for light -grown biofilms.
4. ,The differences in the slope (of the regression lines) between dark and light-grown biofilms suggest that the response of the heterotrophs is faster in biofilms with low algal biomass accrual and slows down when algal biomass is increased.
5. ,It is concluded that algal accumulation in the epilithic biofilm influences the use of organic matter by the heterotrophic community by increasing the amount of organic substrate available for bacteria.  相似文献   

18.
The number of metabolically active bacteria was measured with nalidixic acid over two annual cycles at three depths in the epilimnion of hypertrophic Hartbeespoort Dam, South Africa. Concurrent measurements were made of water temperature, DOC, phytoplankton production of dissolved (EDOC) and particulate organic carbon, chlorophyll a and the uptake of glucose (Vmax). The objective was to determine the dominant factors correlated to the number of metabolically active bacteria and the relationship between active bacterial numbers and heterotrophic activity.The number of active bacteria was usually highest at the surface and ranged between 0.70 and 6.82 x 106 cells ml–1. The dominant factors correlated to the number of bacteria at the surface were water temperature (r = 0.65, n = 54, p<0.001), primary production (r = 0.53, n = 51, p<0.001) and EDOC (r = 0.37, n = 45, p = 0.005). Surface Vmax for glucose ranged between 0.11 and 4.0 µgC 1–1 h–1 and was positively correlated to the number of active bacteria (r = 0.61, n = 53, p<0.001). The specific activity index (10–12 µgC cell–1 h–1) varied between 80 and 2290 at the surface and was most strongly correlated to EDOC (r = 0.70, n = 48, p<0.001). Relationships between active bacterial numbers, water temperature, phytoplankton activity and glucose uptake were also found at two additional depths within the epilimnion. These data suggest that bacterial populations in nutrient enriched lakes contain a large number of metabolically active cells with high individual activity as a result of enhanced phytoplankton growth.  相似文献   

19.
This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (α-glucosidase, β-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity–ecosystem functioning.  相似文献   

20.
There is increasing evidence in the literature showing that fungal pathogens express biologically active ectoenzymes. The expression of surface phosphatases at the cell surface of Cryptococcus neoformans, the etiologic agent of cryptococcosis, was evaluated in the present study. Different isolates of C. neoformans express ectophosphatase activity, which is not influenced by capsule size or serotype. The cryptococcal enzyme is an acid phosphatase, inhibited by classic inhibitors of ectophosphatases, including ammonium molybdate and sodium salts of fluoride and orthovanadate. Only the inhibition of enzyme activity caused by sodium orthovanadate has been shown to be irreversible. The cryptococcal ectoenzyme is also inhibited by Zn2+ and inorganic phosphate, the final product of reactions catalyzed by phosphatases. The ectophosphatase from C. neoformans efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate removal when phosphothreonine is used as a substrate. Yeast cells with irreversibly inhibited ectophosphatases are less capable of adhering to animal epithelial cells than fungi fully expressing enzyme activity, suggesting that ectoenzyme expression can contribute to the pathogenesis of C. neoformans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号