首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have studied the conditions under which a perfluorocarbon emulsion of perfluorooctyl bromide (PFOB; Alliance Pharmaceutical, San Diego, CA) enhances tissue O2 delivery. Measurements of retinal tissue O2 tension (PO2) were made in anesthetized, artificially respirated, dark-adapted, normovolemic cats before, during, and after the infusion of three successive doses of 1 g PFOB/kg body wt each. There was little immediate effect of the infusion on the tissue PO2 when the cats were breathing room air, but the mean increase in tissue PO2 during 100% O2 breathing was 60 +/- 9% (SE; n = 8 cats) greater after infusion of 1 g PFOB/kg and approximately 136% greater after 3 g PFOB/kg. Similar infusions of the emulsifying medium alone had negligible effects on tissue PO2. These results suggest that PFOB emulsion may be clinically useful in treating tissue hypoxia in normovolemic patients breathing O2-enriched air.  相似文献   

2.
Oxygen tension (PO2) was measured with microelectrodes within the retina of anesthetized cats during normoxia and hypoxemia (i.e., systemic hypoxia), and photoreceptor oxygen consumption was determined by fitting PO2 measurements to a model of steady-state oxygen diffusion and consumption. Choroidal PO2 fell linearly during hypoxemia, about 0.64 mmHg/mmHg decrease in arterial PO2 (PaO2). The choroidal circulation provided approximately 91% of the photoreceptors' oxygen supply under dark-adapted conditions during both normoxia and hypoxemia. In light adaptation the choroid supplied all of the oxygen during normoxia, but at PaO2's less than 60 mmHg the retinal circulation supplied approximately 10% of the oxygen. In the dark-adapted retina the decrease in choroidal PO2 caused a large decrease in photoreceptor oxygen consumption, from approximately 5.1 ml O2/100 g.min during normoxia to 2.6 ml O2/100 g.min at a PaO2 of 50 mmHg. When the retina was adapted to a rod saturating background, normoxic oxygen consumption was approximately 33% of the dark-adapted value, and hypoxemia caused almost no change in oxygen consumption. This difference in metabolic effects of hypoxemia in light and dark explains why the standing potential of the eye and retinal extracellular potassium concentration were previously found to be more affected by hypoxemia in darkness. Frequency histograms of intraretinal PO2 were used to characterize the oxygenation of the vascularized inner half of the retina, where the oxygen distribution is heterogeneous and simple diffusion models cannot be used. Inner retinal PO2 during normoxia was relatively low: 18 +/- 12 mmHg (mean and SD; n = 8,328 values from 36 profiles) in dark adaptation, and significantly lower, 13 +/- 6 mmHg (n = 4,349 values from 19 profiles) in light adaptation. Even in the dark-adapted retina, 30% of the values were less than 10 mmHg. The mean PO2 in the inner (i.e., proximal) half of the retina was well regulated during hypoxemia. In dark adaptation it was significantly reduced only at PaO2's less than 45 mmHg, and it was reduced less at these PaO2's in light adaptation.  相似文献   

3.
Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ANH from hematocrit of 36 +/- 3 to 20 +/- 1% was performed in 22 splenectomized, anesthetized beagles (17 analyzed) ventilated with room air. Normovolemia was confirmed by measurement of blood volume. Distribution of perfusion within skeletal muscle was determined by using radioactive microspheres. Tissue oxygen partial pressure was assessed with a polarographic platinum surface electrode. Cardiac index (3.69 +/- 0.79 vs. 4.79 +/- 0.73 l. min-1. m-2) and muscle perfusion (4.07 +/- 0.44 vs. 5.18 +/- 0.36 ml. 100 g-1. min-1) were increased at hematocrit of 20%. Oxygen delivery to skeletal muscle was reduced to 74% of baseline values (0.64 +/- 0.06 vs. 0.48 +/- 0.03 ml O2. 100 g-1. min-1). Nevertheless, tissue PO2 was preserved (27.4 +/- 1.3 vs. 29.9 +/- 1. 4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 +/- 2.2 vs. 13.9 +/- 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.  相似文献   

4.
The oxygen transport capacity of fluorocarbons was investigated in the hamster chamber window model microcirculation to determine the rate at which oxygen is delivered to the tissue in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Hydroxyethlyl starch (HES 200; 200 kDa molecular mass) was used as a plasma expander for two isovolemic hemodilutions performed with 10% HES 200 until a Hct of 65%. A third step reduced the Hct to 75% of baseline and was performed with either HES 200 or a 60% perfluorocarbon (PFC) emulsion. Comparisons of HES 200-only-hemodiluted animals versus 4.2 g/kg PFC emulsion-hemodiluted animals were made at 21% and 100% normobaric oxygen ventilation. It was found that systemic and microvascular oxygen delivery was 25% and 400% higher in the PFC animals compared with HES 200 animals, respectively, showing that PFCs deliver oxygen to the tissue when combined with hyperoxic ventilation in the present experiments, with no evidence of vasoconstriction or impaired microvascular function. Oxygen ventilation (100%) led to a positive base excess for the PFC group (5.5 +/- 2.5 mmol/l) versus a negative balance (-0.8 +/- 1.4 mmol/l) for the HES 200 group, suggesting that microvascular findings corresponded to systemic events.  相似文献   

5.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   

6.
Using modified oxygen needle microelectrodes, vital microscopy with video-recording facilities, measurements of tissue oxygen tension (PO2) profiles near the cortical arterioles and transmural PO2 gradients on pial arterioles of the rat were performed. At control transmural PO2 gradient averaged 1.17 +/- 0.06 mm Hg/microm (mean +/- SEM, n = 40). Local dilatation of the arteriolar wall (microapplication of sodium nitroprusside approximately 2 x 10(-7) M) resulted in marked drop of the transmural PO2 gradient to 0.68 +/- 0.04 mm Hg/microm (p < 0.001, n = 38). The important finding of the study is the dependence of the transmural PO2 gradient on the vascular tone of pial arterioles. The data presented allow to conclude that O2 consumption of the arteriolar wall lies within the range for surrounding tissue and O2 consumption of the endothelial layer and, apparently, has no substantial impact on transmural PO2 gradient.  相似文献   

7.
Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines. The latter may be due to the impaired ability of erythrocytes to off-load oxygen within the microcirculation, thus yielding low tissue/plasma Po(2) but elevated microcirculatory hemoglobin oxygen (HbO(2)) saturations. Alternatively, oxygen shunting may also be due to reduced erythrocyte deformability, hindering the ability of erythrocytes to enter capillaries. Anesthetized pigs underwent ANH (20, 40, 60, and 90 ml/kg hydroxyethyl starch; ANH group: n = 10; controls: n = 5). We measured systemic and mesenteric perfusion. Microvascular intestinal oxygenation was measured independently by remission spectrophotometry [microcirculatory HbO(2) saturation (muHbO(2))] and palladium-porphyrin phosphorescence quenching [microcirculatory oxygen pressure in plasma/tissue (muPo(2))]. Microcirculatory oxygen shunting was assessed as the disparity between mucosal and mesenteric venous HbO(2) saturation (HbO(2)-gap). Erythrocyte deformability was measured as shear stress-induced cell elongation (LORCA difractometer). ANH reduced hemoglobin concentration from 8.1 to 2.2 g/dl. Relative mesenteric perfusion decreased (decreased mesenteric/systemic perfusion fraction). A paralleled reduction occurred in mucosal muHbO(2) (68 +/- 2 to 41 +/- 3%) and muPo(2) (28 +/- 1 to 17 +/- 1 Torr). Thus the proposed constellation indicative for oxygen off-load deficits (sustained muHbO(2) at decreased muPo(2)) did not develop. A twofold increase in the HbO(2)-gap indicated increasing intestinal microcirculatory oxygen shunting. Significant impairment in erythrocyte deformability developed during ANH. We conclude that reduced intestinal oxygenation during ANH is, in addition to redistribution of oxygen delivery away from the intestines, associated with oxygen shunting within the intestines. This shunting appears to be not primarily caused by oxygen off-load deficit but rather by oxygen/erythrocytes bypassing capillaries, wherein a potential contributor is impaired erythrocyte deformability.  相似文献   

8.
To test the genetic capacity of the perinatal lung to respond to O(2) shifts that coincide with the first respiratory movements, rat fetal alveolar type II (fATII) epithelial cells were cultured at fetal distal lung PO(2) (23 Torr) and then exposed to postnatal (23 --> 76 Torr; mild hyperoxic shift), moderate (23 --> 152 Torr; moderate hyperoxic shift), or severe (23 --> 722 Torr; severe hyperoxic shift) oxygenation. Nuclear abundance and consensus binding characteristics of hypoxia-inducible factor (HIF)-1alpha and nuclear factor (NF)-kappaB (Rel A/p65) plus glutathione biosynthetic capacity were determined. Maximal HIF-1alpha activation at 23 Torr was sustained over the postnatal shift in (Delta) PO(2) and was elevated in vivo throughout late gestation. NF-kappaB was activated by the acute postnatal DeltaPO(2) in fATII cells, becoming maximal with moderate and severe oxygenation in vitro and within 6 h of birth in vivo, declining thereafter. fATII cell and whole lung glutathione and GSH-to-GSSG ratio increased fourfold with a postnatal DeltaPO(2) and were matched by threefold activity increases in gamma-glutamylcysteine synthetase and glutathione synthase. GSH concentration depletion by L-buthionine-(S, R)-sulfoximine abrogated both HIF-1alpha and NF-kappaB activation, with HIF-1alpha showing a heightened sensitivity to GSH concentration. We conclude that O(2)-linked genetic regulation in perinatal lung epithelium is responsive to developmental changes in glutathione biosynthetic capacity.  相似文献   

9.
To investigate whether or not the mode of delivery produces differences in cerebral oxygenation, cerebral hemoglobin oxygen saturation was measured using full-spectrum near infrared spectroscopy in 26 healthy term newborn infants immediately after birth. Infants in group 1 (n=20) were delivered vaginally, and those in group 2 (n=6) by elective cesarean section. Arterial oxygen saturation in the right hand was also measured simultaneously using a pulse oximeter. Changes in arterial oxygen saturation showed no significant difference between the two groups. The mean+/-S.D. of cerebral hemoglobin oxygen saturation in group 1 increased rapidly after birth, from 29+/-17% at 2 min to 68+/-6% at 8.5 min, followed by an almost constant value (66+/-7% at 15 min). In comparison, cerebral hemoglobin oxygen saturation in group 2 also increased rapidly until 8.5 min, but after this time decreased significantly to 57+/-5% at 15 min after birth. This indicates that the mode of delivery has a marked influence on cerebral oxygenation immediately after birth.  相似文献   

10.
To investigate CO effects on brain oxygenation, graded carboxyhemoglobinemia (HbCO) was produced in nine unanesthetized fetal sheep by infusing CO-laden erythrocytes in exchange for fetal blood. For the 1st h after this procedure, the mean fetal carboxyhemoglobin levels were 16.5 +/- 0.4% [control (C) = 1.4 +/- 0.4%] for mild HbCO, 22.7 +/- 0.6% (C = 1.8 +/- 0.4%) for moderate HbCO, and 27.8 +/- 0.5% (C = 2.1 +/- 0.7%) for severe HbCO. This induction of HbCO significantly reduced mean preductal arterial PO2 values to 4.3 Torr below control for mild HbCO, 4.6 Torr below control for moderate HbCO, and 5.5 Torr below control for severe HbCO. The respective arterial O2 contents were decreased by 17, 21, and 29%. Mean arterial pH was lowered only during severe HbCO, and arterial PCO2 values were unchanged. HbCO produced a fetal tachycardia. Mean arterial blood pressure was only increased during severe HbCO. The incidences of rapid eye movements and breathing activity were decreased by HbCO in a dose-dependent manner. When related to calculated brain tissue PO2, these decreases were similar to those measured during hypoxic hypoxia and anemia, suggesting that carboxyhemoglobin effects result solely from diminished oxygenation. It is concluded that 1) the peripheral arterial chemoreceptors in the fetus apparently have little effect on hypoxic inhibition of breathing and 2) the carboxyhemoglobin concentrations required to inhibit fetal breathing are greater than those likely to be encountered clinically.  相似文献   

11.
Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation induced by locally applied heat (n = 6) or indirect whole body heating (i.e., heating subject but not area surrounding NIR probes; n = 8). Neither perturbation has been shown to cause a measurable change in muscle blood flow or metabolism. Local heating (approximately 41 degrees C) caused large increases in the NIR-derived tissue oxygenation signal [before heating = 0.82 +/- 0.89 optical density (OD), after heating = 18.21 +/- 2.44 OD; P < 0.001]. Similarly, whole body heating (increase internal temperature 0.9 degrees C) also caused large increases in the tissue oxygenation signal (before heating = -0.31 +/- 1.47 OD, after heating = 12.48 +/- 1.82 OD; P < 0.001). These increases in the tissue oxygenation signal were closely correlated with increases in skin blood flow during both local heating (mean r = 0.95 +/- 0.02) and whole body heating (mean r = 0.89 +/- 0.04). These data suggest that the contribution of skin blood flow to NIR measurements of tissue oxygenation can be significant, potentially confounding interpretation of the NIR-derived signal during conditions where both skin and muscle blood flows are elevated concomitantly (e.g., high-intensity and/or prolonged exercise).  相似文献   

12.
The role of nitric oxide (NO) and reactive oxygen species (ROS) in regulating capillary perfusion was studied in the hamster cheek pouch model during normoxia and after 20 min of exposure to 10% O2-90% N2. We measured PO2 by using phosphorescence quenching microscopy and ROS production in systemic blood. Identical experiments were performed after treatment with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) and after the reinfusion of the NO donor 2,2'-(hydroxynitrosohydrazono)bis-etanamine (DETA/NO) after treatment with L-NMMA. Hypoxia caused a significant decrease in the systemic PO2. During normoxia, arteriolar intravascular PO2 decreased progressively from 47.0 +/- 3.5 mmHg in the larger arterioles to 28.0 +/- 2.5 mmHg in the terminal arterioles; conversely, intravascular PO2 was 7-14 mmHg and approximately uniform in all arterioles. Tissue PO2 was 85% of baseline. Hypoxia significantly dilated arterioles, reduced blood flow, and increased capillary perfusion (15%) and ROS (72%) relative to baseline. Administration of L-NMMA during hypoxia further reduced capillary perfusion to 47% of baseline and increased ROS to 34% of baseline, both changes being significant. Tissue PO2 was reduced by 33% versus the hypoxic group. Administration of DETA/NO after L-NMMA caused vasodilation, normalized ROS, and increased capillary perfusion and tissue PO2. These results indicate that during normoxia, oxygen is supplied to the tissue mostly by the arterioles, whereas in hypoxia, oxygen is supplied to tissue by capillaries by a NO concentration-dependent mechanism that controls capillary perfusion and tissue PO2, involving capillary endothelial cell responses to the decrease in lipid peroxide formation controlled by NO availability during low PO2 conditions.  相似文献   

13.
In systemic organs, ischemia-reperfusion injury is thought to occur during reperfusion, when oxygen is reintroduced to hypoxic ischemic tissue. In contrast, the ventilated lung may be more susceptible to injury during ischemia, before reperfusion, because oxygen tension will be high during ischemia and decrease with reperfusion. To evaluate this possibility, we compared the effects of hyperoxic ischemia alone and hyperoxic ischemia with normoxic reperfusion on vascular permeability in isolated ferret lungs. Permeability was estimated by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb), using methods that did not require reperfusion to make these measurements. Kf and sigma alb in control lungs (n = 5), which were ventilated with 14% O2-5% CO2 after minimal (15 +/- 1 min) ischemia, averaged 0.033 +/- 0.004 g.min-1.mmHg-1.100 g-1 and 0.69 +/- 0.07, respectively. These values did not differ from those reported in normal in vivo lungs of other species. The effects of short (54 +/- 9 min, n = 10) and long (180 min, n = 7) ischemia were evaluated in lungs ventilated with 95% O2-5% CO2. Kf and sigma alb did not change after short ischemia (Kf = 0.051 +/- 0.006 g.min-1.mmHg-1.100 g-1, sigma alb = 0.69 +/- 0.07) but increased significantly after long ischemia (Kf = 0.233 +/- 0.049 g.min-1 x mmHg-1 x 100 g-1, sigma alb = 0.36 +/- 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Using a fine-tip oxygen microelectrodes the longitudinal gradients of oxygen tension (pO2) have been studied in small arterioles (with lumen diameter in control of 5 +/- 20 microm) and in capillaries of the rat brain cortex during stepwise decrease of the blood haemoglobin concentration [Hb] from control [Hb]--14.4 +/- 0.3 g/dl to 10.1 +/- 0.2 g/dl (step 1), 7.0 +/- 0.2 g/dl (step 2) and 3.7 +/- 0.2 g/dl (step 3). All data are presented as "mean +/- standard error". Oxygen tension was measured in arteriolar segments in two locations distanced deltaL = 265 +/- 34 microm, n = 30. Mean diameter of studied arterioles was 10.7 +/- 0.5 microm, n = 71. Length of studied capillary segments was about deltaL = 201 +/- 45 Mm, n = 18. The measured longitudinal pO2 gradient (deltapO2/deltaL) in arterioles amounted 0.03 +/- 0.01 mmHg/microm, n = 15 in control; 0.06 +/- 0.01 mmHg/microm, n = 16 (step 1); 0.07 +/- +/- 0.01 mmHg/microm, n = 14 (step 2); 0.1 +/- 0.01 mmHg/microm, n = 30 (step 3). In the capillaries, the deltapO2/deltaL amounted to: 0.07 +/- 0.01 mmHg/microm, n = 17 (control); 0.09 +/- 0.02 mmHg/microm, n = 16 (step 1); 0.08 +/- 0.01 mmHg/microm, n = 15 (step 2); 0.1 +/- 0.02 mmHg/microm, n = 18 (step 3). An over threefold decrease in the system blood oxygen capacity did not result in significant changes (p > 0.05) of the deltapO2/deltaL in capillaries that might result in relatively homogeneous oxygen flux from blood to tissue in acute anaemia. The longitudinal gradients of blood O2 saturation (deltaSO2/deltaL) in studied arterioles and capillaries were obtained using oxygen dissociation curve (ODC) of haemoglobin in the system blood. The gradients deltaSO2/deltaL in capillaries was shown to be threefold higher than the corresponding gradients in arterioles. The data show that anatomic capillaries are the main source of oxygen to brain tissue as in control and in hypoxic conditions. Sufficient oxygen delivery to brain tissue in acute anaemia is maintained by compensatory mechanisms of cardiovascular and respiratory systems. The data presented are the first measurements of the longitudinal pO, gradients in capillaries and minute cortical arterioles at acute anaemia.  相似文献   

15.
We perfused an isolated rabbit hindlimb preparation with suspensions of human erythrocytes (RBC) having different O2 affinities. Our objective was to compare the effect of changes in P50, the PO2 at which hemoglobin is 50% saturated, on tissue O2 consumption during severe hypoxemia. A high-affinity (HA) group (n = 9) was perfused with RBC incubated in NaCNO (P50 = 21.4 +/- 1.9 Torr). This was compared with a low-affinity (LA) group (n = 9) perfused with rejuvenated RBC (P50 = 31.1 +/- 1.8 Torr). The arterial PO2 of the perfusate was decreased to approximately 24 Torr in both preparations. Perfusion flow and hemoglobin concentration were maintained constant. During hypoxemia arterial O2 saturation and total O2 transport (TO2) were greater in the HA than the LA group (P less than 0.05). O2 consumption and effluent venous PO2 decreased with hypoxemia in both groups to similar levels. Consequently, the LA group showed a greater O2 extraction ratio than the HA group (P less than 0.05). The ratio of phosphocreatine to inorganic phosphate, measured with 31P magnetic resonance spectroscopy, decreased at a comparable rate in both groups. As shown by a mathematical model of peripheral O2 transport, these experimental results can be explained on the basis of peripheral limitation to O2 diffusion. We conclude that increased hemoglobin affinity does not appreciably improve tissue oxygenation in hypoxemia, since the increase in TO2 is offset by diffusion limitation at the tissues.  相似文献   

16.
In vivo EPR was used to investigate liver oxygenation in a hemodynamic model of septic shock in mice. Oxygen-sensitive material was introduced either (i) as a slurry of fine particles which localized at the liver sinusoids (pO2 = 44.39 +/- 5.13 mmHg) or (ii) as larger particles implanted directly into liver tissue to measure average pO2 across the lobule (pO2 = 4.56 +/- 1.28 mmHg). Endotoxin caused decreases in pO2 at both sites early (5-15 min) and at late time points (6 h after endotoxin; sinusoid = 11.22 +/- 2.48 mmHg; lobule = 1.16 +/- 0.42 mmHg). The overall pO2 changes observed were similar (74.56% versus 74.72%, respectively). Blood pressures decreased transiently between 5 and 15 min (12.88 +/- 8% decrease) and severely at 6 h (59 +/- 9% decrease) following endotoxin, despite volume replacement with saline. Liver and circulatory nitric oxide was elevated at these times. Liver oxygen extraction decreased from 44% in controls to only 15% following endotoxin, despite severe liver hypoxia. Arterial oxygen saturation, blood flow (hepatic artery), and cardiac output were unaffected. Pretreatment with l-NMMA failed to improve endotoxin-induced oxygen defects at either site, whereas interleukin-13 preserved oxygenation. These site-specific measurements of pO2 provide in vivo evidence that the principal cause of liver hypoxia during hypodynamic sepsis is reduced oxygen supply to the sinusoid and can be alleviated by maintaining sinusoidal perfusion.  相似文献   

17.
Enhancement of beta-cell sensitivity to glucose by oral fat load.   总被引:1,自引:0,他引:1  
Recent studies have demonstrated that 6 h infusions of lipid emulsion enhance insulin release, whereas 24 h infusions inhibit insulin secretion. How insulin release is modulated after oral fat loading has not yet been elucidated. 17 healthy fasting volunteers were subjected to 3 experiments in random order: test 1 was a frequently sampled i. v. glucose tolerance test (FSIVGTT, 0.3 g/kg glucose), test 2 began with the ingestion of 50 % sunflower oil (1.5 g/kg) followed by FSIVGTT 4 h later. Test 3 was identical to test 2 with i. v. addition of 100 U/kg heparin prior to FSIVGTT. Glucose and insulin data were analyzed by minimal model assumptions - glucose sensitivity of the beta-cells (Theta1), acute insulin response (AIR) (10 min), 3 h insulin release (Theta2), glucose threshold of insulin secretion (h), insulin degradation rate (n), peripheral insulin sensitivity (S(I)), and glucose-dependent glucose disposal (S(G)). After drinking the fat emulsion, FFAs increased to 0.8 +/- 0.3 mmol/l (test 2) and to 3.0 +/- 0.3 mmol/l (test 3). Moderately increased FFA concentrations were associated with elevation of Theta1 (test 1, control 335 +/- 157 vs. test 2: 859 +/- 612 pM x min x mM(-1), p = 0.030). At high plasma FFA levels and in the presence of heparin (test 3), Theta1 was reduced compared to test 2 and unchanged compared to test 1. Theta2 and h were elevated in both tests 2 and 3 compared to test 1. No changes of n, S(I) and S(G) were found. In conclusion, the ingestion of sunflower oil triglyceride emulsion resulted in a 60 % increase in plasma free fatty acids and enhanced the capacity of beta-cells to secrete insulin. Heparin-induced high levels of FFA further augmented the total insulin release and inhibited parameters of glucose responsiveness.  相似文献   

18.
O2 delivery to maximally working muscle was decreased by altering hemoglobin (Hb) concentration and arterial PO2 (PaO2) to investigate whether the reductions in maximal O2 uptake (VO2max) that occur with lowered [Hb] are in part related to changes in the effective muscle O2 diffusing capacity (DmO2). Two sets of experiments were conducted. In the initial set (n = 8), three levels of Hb [5.8 +/- 0.3, 9.4 +/- 0.1, and 14.4 +/- 0.6 (SE) g/100 ml] in the blood were used in random order to pump perfuse, at equal muscle blood flows and PaO2, maximally working isolated dog gastrocnemius muscle. VO2max declined with decreasing [Hb], but the relationship between VO2max and both the effluent venous PO2 (PvO2) and the calculated mean capillary PO2 (PcO2) was not linear through the origin and, therefore, not compatible with a single value of DmO2 (as calculated by Bohr integration using a model based on Fick's law of diffusion). To clarify these results, a second set of experiments (n = 6) was conducted in which two levels of Hb (14.0 +/- 0.6 and 6.9 +/- 0.6 g/100 ml) were each combined with two levels of oxygenation (PaO2 79 +/- 8 and 29 +/- 2 Torr) and applied in random sequence to again pump perfuse maximally working dog gastrocnemius muscle at constant blood flow. In these experiments, the relationship between VO2max and both PvO2 and calculated PcO2 for each [Hb] was consistent with a constant estimate of DmO2 as PaO2 was reduced, but the calculated DmO2 for the lower [Hb] was 33% less than that at the higher [Hb] (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Repeated exposure to brief periods of hypoxia leads to pathophysiological changes in experimental animals similar to those seen in sleep apnea. To determine the effects of such exposure on oxygen levels in vivo, we used an optical method to measure PO2 in microcirculatory vessels and tissue of the rat cremaster muscle during a 1-min step reduction of inspired oxygen fraction from 0.21 to 0.07. Under control conditions, PO2 was 98.1 +/- 1.9 Torr in arterial blood, 52.2 +/- 2.8 Torr in 29.0 +/- 2.7-microm arterioles, 26.8 +/- 1.7 Torr in the tissue interstitium near venous capillaries, and 35.1 +/- 2.6 Torr in 29.7 +/- 1.9-microm venules. The initial fall in PO2 during hypoxia was significantly greater in arterial blood, being 93% complete in the first 10 s, whereas it was 68% complete in arterioles, 47% at the tissue sites, and 38% in venules. In the 10- to 30-s period, the fall in normalized tissue and venular PO2 was significantly greater than in arterial PO2. At the end of hypoxic exposure, PO2 at all measurement sites had fallen very nearly in proportion to that in the inspired gas, but tissue oxygen levels did not reach critical PO2. Significant differences in oxyhemoglobin desaturation rate were also observed between arterial and microcirculatory vessels during hypoxia. In conclusion, the fall in microcirculatory and tissue oxygen levels in resting skeletal muscle is significantly slower than in arterial blood during a step reduction to an inspired oxygen fraction of 0.07, and tissue PO2 does not reach anaerobic levels.  相似文献   

20.
Tissue PO2 was measured in the primary visual cortex of anesthetized, artificially ventilated normovolemic cats to examine tissue oxygenation with respect to depth. The method utilized 1) a chamber designed to maintain cerebrospinal fluid pressure and prevent ambient PO2 from influencing the brain, 2) a microelectrode capable of recording electrical activity as well as local PO2, and 3) recordings primarily during electrode withdrawal from the cortex rather than during penetrations. Local peaks in the PO2 profiles were consistent with the presence of numerous vessels. Excluding the superficial 200 microm of the cortex, in which the ambient PO2 may have influenced tissue PO2, there was a slight decrease (4.9 Torr/mm cortex) in PO2 as a function of depth. After all depths and cats were weighted equally, the average PO2 in six cats was 12.8 Torr, with approximately one-half of the values being 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号