首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Acetic and folic acids hyperpolarize the membrane potential ofParamecium tetraurelia in a concentration-dependent manner. The membrane responses are accompanied by small changes in cell resistance, and are significantly reduced by increasing extracellular cation concentrations, suggesting that the attractants bring about the membrane potential change by increasing cell permeability to cations. The inability to show a reversal potential for the hyperpolarization to attractants suggests that the effects of cations on the response are non-specific, however. The possible roles of Ca++, K+, and Na+ in the attractant-induced responses were further investigated by applying acetate and folate to cells with genetic defects in specific ion conductances, by collapsing the driving forces for these ions, and by testing the effects of ion channel blockers on the responses. These studies suggest that the membrane responses to attractants are not due to the direct effects of increased or decreased membrane permeability to cations.Attempts to block the acetate and folate-induced hyperpolarization by collapsing surface potential or using a mutant with reduced surface charge were inconclusive, as were studies on the possible role of attractant transport in the membrane responses.We hypothesize that the membrane hyperpolarization may be due to either the indirect effects of increased calcium permeability, to extrusion of calcium through activation of a calcium pump, or to a proton efflux.  相似文献   

2.
Several divalent cation-dependent ATP phosphohydrolases associated with cilia, ciliary axonemes, ciliary membranes, pellicles, trichocysts, nuclei, mitochondria, microsomes, and soluble peripheral cell surface fractions of Paramecium tetraurelia were resolved in this study. Fifteen different activity bands were detected in whole cell sonicates or subcellular fractions by Triton polyacrylamide gel electrophoresis and ATPase activity staining. The ciliary surface membrane contained two major ATPase activities that were distinct from the enzymes associated with all other cell fractions.  相似文献   

3.
Summary Paramecium tetraurelia is attracted to L-glutamic acid concentrations of 10–9 M to 10–4 M in a behavioural assay. Electrophysiological studies show thatP. tetraurelia responds to L-glutamate application with hyperpolarization. This response is transient, even in the continued presence of the stimulus. The concentration dependence of the membrane potential response is similar to that of the behavioural responses, although the threshold concentration of L-glutamate required for hyperpolarization is three orders of magnitude lower than for attraction. The membrane potential response to L-glutamate persists following artificial deciliation ofP. tetraurelia.While application of L-glutamate toP. tetraurelia invariably elicits a hyperpolarization, withdrawal of the stimulus frequently results in a second transient membrane response, in the form of either a hyperpolarization or a depolarization. It is suggested that these off-responses may have a significant role in maintaining a behavioural response to L-glutamate.Abbreviation Iche index of chemokinesis  相似文献   

4.
The ciliate Paramecium tetraurelia has four arginine kinase genes (AK1, AK2, AK3, and AK4). Of these genes, only AK3 has a signal sequence for farnesylation, a post-translational modification that enables anchoring of the modified enzyme to the ciliary membrane. To confirm this modification, AK3 was synthesized using a cell-free protein synthesis system and the peptide masses were analyzed using peptide mass fingerprinting (PMF). The PMF analysis indicated that the C-terminal peptide of AK3 is farnesylated. Thus, AK3 can be farnesylated under physiologically appropriate conditions. To determine the subcellular localization of P. tetraurelia AK3, Western blot analysis was performed using an AK3 polyclonal antibody for the proteins extracted from intact cells and ciliary fractions. When extraction was performed using Triton X-100, AK3 was detected the ciliary fraction. This result suggested that the ciliary fraction contains AK3. In addition, we investigated the role of P. tetraurelia AKs in ciliary movement using the feeding RNA interference method. The swimming velocity of AK1- and AK3-silenced cells was significantly reduced to half the value of that control cells. In summary, P. tetraurelia AK3 is likely to be located in the ciliary membrane and influences swimming velocity, presumably through the phosphoarginine shuttle system present in cilia.  相似文献   

5.
In Paramecium primaurelia, the two major classes of cell surface proteins, the surface antigen (SAg) and the surface GPI proteins (SGPs), are linked to the plasma membrane through a glycosylphosphatidylinositol (GPI) anchor. In the present study, we have characterized the expression of the SGPs in several geographical strains of P. primaurelia and P. tetraurelia at different temperatures, 23 °C and 32 °C. The identification of the expressed SGPs was performed on purified cilia, by establishing the SGP SDS-PAGE profiles under four different conditions: with or without their anchoring lipid, cleaved with a Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), and either in a reduced or in an unreduced state. This screening revealed the existence of specific sets of ciliary SGPs, as a function of temperature and the geographical origin of the strains. The SGPs the most abundant at 23 °C and 32 °C displayed a rapid turnover. We also looked for the presence of PI-PLC releasable proteins in purified cortices. In addition to the SAg and SGPs, the cortical fraction was shown to contain other PI-PLC releasable proteins, not found in the ciliary fraction, thus localized exclusively in the interciliary region.  相似文献   

6.
Axenic late log phase cultures of Tetrahymena pyriformis DN-B3 are deciliated by treatment with dibucaine. Deciliation occurs first at the anterior end of the cell and then progresses posteriorly. Concomitantly, all mature mucocysts are induced to discharge by the drug. The exact point of scission of each cilium is found to be a very localized region, between two specialized membrane arrays: the ciliary necklace and the ciliary patches, situated at the base of the cilium. Isolated cilia retain the patches, while the necklaces remain with the deciliated bodies. The cell membrane seals over the stubs. The new ciliary membrane then grows out above the necklace without the patches, which do not generally appear for several hours. Membrane renewal is therefore asynchronous, with bulk growth preceding the formation of specialized intramembrane particle arrays. During regrowth, the cilia also first return at the anterior end of the cell. This suggests that underlying gradients, perhaps related to Ca2+, are significant in the deciliation process.  相似文献   

7.
8.
Paramecium shows rapid forward swimming due to increased beat frequency of cilia in normal (forward swimming) direction in response to various kinds of stimuli applied to the cell surface that cause K+‐outflow accompanied by a membrane hyperpolarization. Some adenylate cyclases are known to be functional K+ channels in the membrane. Using gene‐specific knockdown methods, we examined nine paralogues of adenylate cyclases in P. tetraurelia to ascertain whether and how they are involved in the mechanical stimulus‐induced hyperpolarization‐coupled acceleration of forward swimming. Results demonstrated that knockdown of the adenylate cyclase 1 (ac1)‐gene and 2 (ac2)‐gene inhibited the acceleration of forward swimming in response to mechanical stimulation of the cell, whereas that spared the acceleration response to external application of 8‐Br‐cAMP and dilution of extracellular [K+] induced hyperpolarization. Electrophysiological examination of the knockdown cells revealed that the hyperpolarization‐activated inward K+ current is smaller than that of a normal cell. Our results suggest that AC1 and AC2 are involved in the mechanical stimulus‐induced acceleration of ciliary beat in Paramecium.  相似文献   

9.
A particulate adenylate cyclase was identified in the excitable ciliary membrane from Paramecium tetraurelia. MnATP was preferentially used as substrate, the Km was 67 μM, Vmax was 1 nmol cAMP.min?1.mg?1, a marked temperature optimum of 37°C was observed. Adenylate cyclase was not inhibited by 100 μM EGTA or 100 μM La3+, whereas under these conditions guanylate cyclase activity was abolished. Fractionation of ciliary membrane vesicles by a Percoll density gradient yielded two vesicle populations with adenylate cyclase activity. In contrast, calmodulin/Ca-dependent guanylate cyclase was associated with vesicles of high buoyant density only.  相似文献   

10.
T. Hamasaki 《Protoplasma》1999,206(4):241-244
Summary Ciliary beating is empowered by a mechanochemical enzyme, dynein, which appears as two rows of projections on doublet microtubules. While inner-arm dyneins modulate beat form, outer-arm dynein empowers ciliary beat and sets beat frequency. Beat frequency is controlled via phosphorylation of outer-arm dynein. UsingParamecium tetraurelia as model system, we have previously identified a regulatory light chain of outer-arm dynein (22S dynein), Mr29 (p29), whose phosphorylation is cAMP-dependent. The phosphorylation state of the p29 in 22 S dynein determines in vitro microtubule translocation velocity. Although in vitro phosphorylation of p29 takes place in a short time, the percent change ist significantly less than the percent change in dynein activation, or in ciliary beat frequency. A potential mechanism that explains how a few activated dyneins can change ciliary beating is discussed.  相似文献   

11.
Summary The sensory palps of the macrodasyoid gastrotrichTetranchyroderma papii contain processes from two types of cell: 22–23 bipolar primary sensory cells and two to three support cells. In the proximal region of the palp each sensory cell contains a short ciliary segment with a basal body and from this ciliary segment a longer distal segment lacking axonemal microtubules extends through the major part of the length of the palp. Each support cell process bears microvilli and contains a conspicuous bundle of microtubules running the entire length of the process. The cell bodies of both cell types are situated in the epidermis of the head region. The palps are interpreted as having a chemosensory function. They are considered to be homologous to the posterior cephalic sensory organ ofTurbanella cornuta, but not the head tentacles ofChordodasys antennatus or nematode amphids.  相似文献   

12.
Kiyoshi Katou  Kazuo Ichino 《Planta》1982,155(6):486-492
Carbon dioxide, introduced into the gas phase of the experimental chamber, has distinct effects on two spatially separate membrane potentials and the rate of elongation growth in hypocotyl segments ofVigna sesquipedalis Wight. Both membrane potentials (V ps andV px=the electric potential difference between the parenchyma symplast and the surface of the hypocotyl, and that between the parenchyma symplast and the xylem, respectively) hyperpolarized rapidly but transiently at the introduction of CO2. Prolonged exposure of the hypocotyl to high concentrations of CO2 (above 10%) caused depolarization of membrane potentials above the level before CO2 introduction. When CO2 was replaced with air, the membrane potentials exhibited a distinct depolarization response of transient nature. The growth rate of the hypocotyl segments exhibited similar responses to CO2 as did the membrane potentials (the increase and the decrease of the growth rate were corresponded to the hyperpolarization and the depolarization, respectively), but these responses always followed the changes of the membrane potentials. The CO2-induced maximum hyperpolarization ofV ps and the maximum increase of the growth rate were closely correlated. All these responses were strictly dependent on aerobic metabolism. These results indicate that CO2 may regulate elongation growth in two ways: by affecting the activity of the electrogenic ion pump via intracellular acidification, and also by acting via apoplastic acidification as a wall-loosening acid.Symbols and abbreviations V sx electric potential difference between the surface (S) and the xylem (X) of the hypocotyl - V px electric potential difference between the inside of a parenchyma cell (P) andX - V ps electric potential difference betweenP andS - V ps (CO2, max) the maximum value of CO2-induced hyperpolarization ofV ps - GR(CO2, max) the maximum value of CO2-induced increase of the growth rate - IAA indole-3-acetic acid  相似文献   

13.
Paramecium tetraurelia locate their␣foodsource by detecting bacterial metabolites and altering swimming behavior to congregate near bacterial populations on which they feed. Several attractants, such as folate, glutamate, cAMP and acetate have been identified and various aspects of chemoreception, signal transduction and effector mechanisms have been described. Here we characterize the Paramecium chemoresponse to biotin. An essential enzymatic cofactor in all cells, biotin is secreted by a large number of bacterial species during growth phase. P. tetraurelia are strongly attracted to biotin with a half-maximal behavioral response at 0.3 mmol · 1−1 in T-maze assays. Physiological recordings from whole cells show that cells hyperpolarize in a concentration-dependent manner in biotin. Whole-cell binding assays utilizing 3H-biotin identify a saturable and specific binding site with an apparent dissociation constant of 0.4 mmol · l−1. The biotin analogs desthiobiotin and biotin methyl ester are also strong attractants. Diaminobiotin fails to attract P. tetraurelia at 1 mmol · l−1, but does interfere with the biotin chemoresponse and displaces 3H-biotin from whole cells. We hypothesize that the keto group and/or fidelity of the ureido ring of biotin are necessary for biotin chemoresponse. Accepted: 23 April 1998  相似文献   

14.
We combined widely different biochemical methods to analyze proteins of the cell surface of P. tetraurelia since so far one can isolate only a subfraction of cell membrane vesicles enriched in the GPI-anchored surface antigens (``immoblization' or ``i-AGs'). We also found that i-AGs may undergo partial degradation by endogenous proteases. Genuine intrinsic membrane proteins were recognized particularly with lipophilic 5-[125I]-iodonaphthalene-1-azide (INA) labeling which reportedly ``sees' integral proteins and cytoplasmic cell membrane-associated proteins. With INA (+DTT), bands of ≤55 kDa were similar as with hydrophilic iodogen (+DTT), but instead of large size bands including i-AGs, a group of 122, 104 and 94 kDa appeared. Several bands of the non i-AG type are compatible with integral (possibly oligomeric) or associated proteins of the cell membrane of established molecular identity, as we discuss. In summary, we can discriminate between i-AGs and some functionally important minor cell membrane components. Our methodical approach might be relevant also for an analysis of some related protozoan parasites. Received: 5 April 1999/Revised: 19 July 1999  相似文献   

15.
The proteins in the ciliary membrane of wild-type and mutant Paramecium tetraurelia are examined with SDS and IEF gels. Over 80% of the proteins in the ciliary membrane belong to two groups: the immobilization antigen (I-Ag), which is a 220–280 kD surface protein, and a set of at least four integral proteins slightly over 40 kD (the 40 k), most of which focus near pH 4.0 (the acidic 40 k). Variations of the I-Ag in its apparent molecular weight appear spontaneously in different clones of the same strain and can be triggered by changing the culture temperatures. We discovered that the members of the acidic 40 k family also vary in their relative proportion. Furthermore, the variations in I-Ag and those in acidic 40 k are tightly coupled. The concerted changes suggest a co-regulation in the synthesis of these proteins. The ciliary membranes of 20 mutants of 11 complementation groups known for their behavioral and electrophysiological defects are examined. Coupled variations of I-Ag and acidic 40 k among clones, similar to those of the wild type, are seen. Besides the I-Ag and the acidic 40 k, this membrane has over 60 other species of proteins, most of which are invariant. Shifts in the isoelectric points of two of these minor proteins have been correlated with two different mutations, ‘fast-2’ and ‘paranoiac A’. No electrophoretic shifts can be correlated with the ‘pawn B’ mutation as found by Merkel et al. [35].  相似文献   

16.
Cilia are highly conserved in most eukaryotes and are regarded as an important organelle for motility and sensation in various species. Cilia are microscopic, hair-like cytoskeletal structures that protrude from the cell surface. The major focus in studies of cilia has been concentrated on the ciliary dysfunction in vertebrates that causes multisymptomatic diseases, which together are referred to as ciliopathies. To date, the understanding of ciliopathies has largely depended on the study of ciliary structure and function in different animal models. Zinc finger MYND-type containing 10 (ZMYND10) is a ciliary protein that was recently found to be mutated in patients with primary ciliary dyskinesia (PCD). In Paramecium tetraurelia, we identified two ZMYND10 genes, arising from a whole-genome duplication. Using RNAi, we found that the depletion of ZMYND10 in P. tetraurelia causes severe ciliary defects, thus provoking swimming dysfunction and lethality. Moreover, we found that the absence of ZMYND10 caused the abnormal localization of the intraflagellar transport (IFT) protein IFT43 along cilia. These results suggest that ZMYND10 is involved in the regulation of ciliary function and IFT, which may contribute to the study of PCD pathogenesis.  相似文献   

17.
Fluorescence anisotropy and average fluorescence lifetime of diphenylhexatriene were measured in artificial lipid membrane vesicles. Within the temperature range investigated (15–52°C) both parameters correlate and can be used interchangeably to measure membrane fluidity. Fluorescence anisotropy of DPH in membrane vesicles of cilia from the protozoan Paramecium tetraurelia decreased slightly from 5 to 37°C, yet, no phase transition was observed. An estimated flow activation energy of approx. 2 kcal/mol indicated that the ciliary membrane is very rigid and not readily susceptible to environmental stimuli. The ciliary membrane contains two domains of different membrane fluidity as indicated by two distinct fluorescence lifetimes of diphenylhexatriene of 7.9 and 12.4 ns, respectively. Ca2+ flux into ciliary membrane vesicles of Paramecium as measured with the Ca2+ indicator dye arsenazo III showed a nonlinear temperature dependency from 5 to 35°C with a minimum around 15°C and increasing flux rates at higher and lower temperatures. The fraction of vesicles permeable for Ca2+ remained unaffected by temperature. The differences in temperature dependency of Ca2+ conductance and membrane fluidity indicate that the Ca2+ permeability of the ciliary membrane is a membrane property which is not directly affected by the fluidity of its lipid environment.  相似文献   

18.
Two different, hitherto unknown, diseases occurred in two specimens ofSagitta crassa which were individually isolated and maintained in the laboratory. One specimen survived for 24 days, producing a total of 343 eggs and suddenly died without showing any prior symptoms, and upon death had a grotesque appearance. The other had ciliary sense organs the hairs of which became stuck to one another. Ciliary sense organs are important for feeding of chaetognaths; once they become abnormal, the chaetognath may die of starvation. Specimens suffering from X-diseases have not been obtained from field samples so far. Chaetognaths which remained transparent at the time of death included specimens whose ciliary sense organs were attacked by bacteria, those slightly infected by bacteria on their body surface and those with abnormally rough body surfaces. Although the reasons for the development of the abnormality of the ciliary sense organs and body surfaces as well as the mechanism of bacterial infection remain obscure, bacterial infection and abnormalities of the body surface are often observed not only in the laboratory but also in the sea.  相似文献   

19.
Y. Iwadate  M. Kikuyama  H. Asai 《Protoplasma》1999,206(1-3):11-19
Summary Trichocyst discharge, ciliary reversal, and cell body contraction inParamecium spp. have all been claimed to be regulated by the intracellular Ca2+ concentration ([Ca2+]i) at the cortical region of the cell. We injected caged Ca2+ intoP. caudatum cells and applied ultraviolet (UV) light to the cell for 125 ms. This did not induce trichocyst discharge but did induce both ciliary reversal and cell body contraction. A re-application of UV for 125 ms triggered trichocyst discharge. These results demonstrate that (1) trichocyst discharge and ciliary reversal and cell body contraction are controlled by [Ca2+]i and (2) the threshold of [Ca2+]i for trichocyst discharge is higher than those for the other two functions.Abbreviations DTT dithiothreitol - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ICL infraciliary lattice - [Ca2+]i intracellular Ca2+ concentration - NP-EG o-nitrophenyl EGTA - PMT photomultiplier tube - UV ultraviolet  相似文献   

20.
SYNOPSIS. Conjugation in Paramecium tetraurelia can be induced within mating-reactive cultures of a single mating type by treating the cells with solutions of KC1 + acriflavine in culture medium low in Ca2+. Gene mutations with known physiologic effect were used as selective inhibitors of cell surface membrane function to see which functions are necessary for chemical induction of conjugation. The results strongly suggest that a transient increase in the internal concentration of calcium at the very beginning of chemical induction is a necessary but not sufficient step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号