首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Characterization of the human cysteinyl leukotriene 2 receptor   总被引:16,自引:0,他引:16  
The contractile and inflammatory actions of the cysteinyl leukotrienes (CysLTs), LTC(4), LTD(4), and LTE(4), are thought to be mediated through at least two distinct but related CysLT G protein-coupled receptors. The human CysLT(1) receptor has been recently cloned and characterized. We describe here the cloning and characterization of the second cysteinyl leukotriene receptor, CysLT(2), a 346-amino acid protein with 38% amino acid identity to the CysLT(1) receptor. The recombinant human CysLT(2) receptor was expressed in Xenopus oocytes and HEK293T cells and shown to couple to elevation of intracellular calcium when activated by LTC(4), LTD(4), or LTE(4). Analyses of radiolabeled LTD(4) binding to the recombinant CysLT(2) receptor demonstrated high affinity binding and a rank order of potency for competition of LTC(4) = LTD(4) LTE(4). In contrast to the dual CysLT(1)/CysLT(2) antagonist, BAY u9773, the CysLT(1) receptor-selective antagonists MK-571, montelukast (Singulair(TM)), zafirlukast (Accolate(TM)), and pranlukast (Onon(TM)) exhibited low potency in competition for LTD(4) binding and as antagonists of CysLT(2) receptor signaling. CysLT(2) receptor mRNA was detected in lung macrophages and airway smooth muscle, cardiac Purkinje cells, adrenal medulla cells, peripheral blood leukocytes, and brain, and the receptor gene was mapped to chromosome 13q14, a region linked to atopic asthma.  相似文献   

5.
Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.  相似文献   

6.
Montelukast and Zafirlukast are known leukotriene receptor antagonists prescribed in asthma treatment. However, these fall short as mono therapy and are frequently used in combination with inhaled glucocorticosteroids with or without long acting beta 2 agonists. Therefore, it is of interest to apply ligand and structure based virtual screening strategies to identify compounds akin to lead compounds Montelukast and Zafirlukast. Hence, compounds with structures having 95% similarity to these compounds were retrieved from NCBI׳s PubChem database. Compounds similar to lead were grouped and docked at the antagonist binding site of cysteinyl leukotriene receptor 1. This exercise identified compounds UNII 70RV86E50Q (Pub Cid 71587778) and Sure CN 9587085 (Pub Cid 19793614) with higher predicted binding compared to Montelukast and Zafirlukast. It is shown that the compound Sure CN 9587085 showed appreciable ligand receptor interaction compared to UNII 70RV86E50Q. Thus, the compound Sure CN 9587085 is selected as a potent antagonist to cysteinyl leukotriene receptor 1 for further consideration in vitro and in vivo validation.  相似文献   

7.
Linker for activation of T cells (LAT) is essential for T cell activation. Mice with mutations of distinct LAT tyrosine residues (LatY136F and Lat3YF) develop lymphoproliferative disorders involving TCR alphabeta or gammadelta T cells that trigger symptoms resembling allergic inflammation. We analyzed whether these T cells share a pattern of gene expression that may account for their pathogenic properties. Both LatY136F alphabeta and Lat3YF gammadelta T cells expressed high levels of the type 1 cysteinyl leukotriene receptor (CysLT(1)). Upon binding to the 5(S)-hydroxy-6(R)-S-cysteinylglycyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTD(4)) cysteinyl leukotriene, CysLT(1) induced Ca(2+) flux and caused chemotaxis in both LatY136F alphabeta and Lat3YF gammadelta T cells. Wild-type in vitro-activated T cells, but not resting T cells, also migrated toward LTD(4) however with a lower magnitude than T cells freshly isolated from LatY136F and Lat3YF mice. These results suggest that CysLT(1) is likely involved in the recruitment of activated alphabeta and gammadelta T cells to inflamed tissues.  相似文献   

8.
9.
10.
Cysteinyl leukotrienes (CysLTs) play an important role in eosinophilic airway inflammation. In addition to their direct chemotactic effects on eosinophils, indirect effects have been reported. Eotaxin is a potent eosinophil-specific chemotactic factor produced mainly by fibroblasts. We investigated whether CysLTs augment eosinophilic inflammation via eotaxin production by fibroblasts. Leukotriene (LT)C(4) alone had no effect on eotaxin production by human fetal lung fibroblasts (HFL-1). However, LTC(4) stimulated eotaxin production by IL-13-treated fibroblasts, thereby indirectly inducing eosinophil sequestration. Unstimulated fibroblasts did not respond to LTC(4), but coincubation or preincubation of fibroblasts with IL-13 altered the response to LTC(4). To examine the mechanism(s) involved, the expression of CysLT1R in HFL-1 was investigated by quantitative real-time PCR and flow cytometry. Only low levels of CysLT1R mRNA and no CysLT1R protein were expressed in unstimulated HFL-1. In contrast, stimulation with IL-13 at a concentration of 10 ng/ml for 24 h significantly up-regulated both CysLT1R mRNA and protein expression in HFL-1. The synergistic effect of LTC(4) and IL-13 on eotaxin production was abolished by CysLT1R antagonists pranlukast and montelukast. These findings suggest that IL-13 up-regulates CysLT1R expression, which may contribute to the synergistic effect of LTC(4) and IL-13 on eotaxin production by lung fibroblasts. In the Th2 cytokine-rich milieu, such as that in bronchial asthma, CysLT1R expression on fibroblasts might be up-regulated, thereby allowing CysLTs to act effectively and increase eosinophilic inflammation.  相似文献   

11.
The cysteinyl leukotrienes, leukotriene (LT) C(4), LTD(4), and LTE(4), are lipid mediators that have been implicated in the pathogenesis of several inflammatory processes, including asthma. The human LTD(4) receptor, CysLT(1)R, was recently cloned and characterized. We had previously shown that HL-60 cells differentiated toward the eosinophilic lineage (HL-60/eos) developed specific functional LTD(4) receptors. The present work was undertaken to study the potential modulation of CysLT(1)R expression in HL-60/eos by IL-5, an important regulator of eosinophil function. Here, we report that IL-5 rapidly up-regulates CysLT(1)R mRNA expression, with consequently enhanced CysLT(1)R protein expression and function in HL-60/eos. CysLT(1)R mRNA expression was augmented 2- to 15-fold following treatment with IL-5 (1-20 ng/ml). The effect was seen after 2 h, was maximal by 4 h, and maintained at 8 h. Although CysLT(1)R mRNA was constitutively expressed in undifferentiated HL-60 cells, its expression was not modulated by IL-5 in the absence of differentiation. Differentiated HL-60/eos cells pretreated with IL-5 (10 ng/ml) for 24 h showed enhanced CysLT(1)R expression on the cell surface, as assessed by flow cytometry using a polyclonal anti-CysLT(1)R Ab. They also showed enhanced responsiveness to LTD(4), but not to LTB(4) or platelet-activating factor, in terms of Ca(2+) mobilization, and augmented the chemotactic response to LTD(4). Our findings suggest a possible mechanism by which IL-5 can modulate eosinophil functions and particularly their responsiveness to LTD(4), and thus contribute to the pathogenesis of asthma and allergic diseases.  相似文献   

12.
In the present report, we investigated the effect of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) expression on the agonist-induced internalization of the thromboxane A(2) beta receptor (TPbeta receptor). Interestingly, we found that EBP50 almost completely blocked TPbeta receptor internalization, which could not be reversed by overexpression of G protein-coupled receptor (GPCR) kinases and arrestins. Because we recently demonstrated that EBP50 can bind to and inhibit Galpha(q), we next studied whether Galpha(q) signaling could induce TPbeta receptor internalization, addressing the long standing question about the relationship between GPCR signaling and their internalization. Expression of a constitutively active Galpha(q) mutant (Galpha(q)-R183C) resulted in a robust internalization of the TPbeta receptor, which was unaffected by expression of dominant negative mutants of arrestin-2 and -3, but inhibited by expression of EBP50 or dynamin-K44A, a dominant negative mutant of dynamin. Phospholipase Cbeta and protein kinase C did not appear to significantly contribute to internalization of the TPbeta receptor, suggesting that Galpha(q) induces receptor internalization through a phospholipase Cbeta- and protein kinase C-independent pathway. Surprisingly, there appears to be specificity in Galpha protein-mediated GPCR internalization. Galpha(q)-R183C also induced the internalization of CXCR4 (Galpha(q)-coupled), whereas it failed to do so for the beta(2)-adrenergic receptor (Galpha(s)-coupled). Moreover, Galpha(s)-R201C, a constitutively active form of Galpha(s), had no effect on internalization of the TPbeta, CXCR4, and beta(2)-adrenergic receptors. Thus, we showed that Galpha protein signaling can lead to internalization of GPCRs, with specificity in both the Galpha proteins and GPCRs that are involved. Furthermore, a new function has been described for EBP50 in its capacity to inhibit receptor endocytosis.  相似文献   

13.
We report the identification of an EST encoding a murine cysteinyl leukotriene (mCysLT) receptor. LTD4, LTC4 and LTE4 but not LTB4 or various nucleotides activated Ca2+-evoked Cl- currents in mCysLT1 expressing Xenopus laevis oocytes. The response to LTD4 was blocked by MK-571, reduced by pretreatment with pertussis toxin (PTX), and was partly dependent on extracellular Ca2+. The identified murine CysLT1 receptor differs from the hCysLT1 receptor with regard to PTX sensitivity, receptor-mediated Ca2+ influx, and antagonist sensitivity.  相似文献   

14.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

15.
16.
Phosphorylated platelet-derived growth factor (PDGF) receptor becomes internalized and then is dephosphorylated by protein-tyrosine phosphatase (PTP) 1B at the endoplasmic reticulum (ER). However, it remains unclear where PTP1B dephosphorylates insulin receptor and inhibits its activity. To clarify how and where PTP1B could interact with insulin receptor, we overexpressed a phosphatase-inactive mutant, PTP1BC/S, in 3T3-L1 adipocytes. Although PDGF receptor was maximally associated with PTP1BC/S at 30 min after PDGF stimulation, the maximal association of insulin receptor with PTP1BC/S was attained at 5 min after insulin stimulation. Furthermore, dansylcadaverine, a blocker of receptor internalization, inhibited this PDGF-induced association of PTP1BC/S with its receptor. However, dansylcadaverine did not affect the insulin-stimulated association of PTP1BC/S with insulin receptor, as well as dephosphorylation of insulin receptor by PTP1B. These results indicate that PTP1B might interact with insulin receptor and deactivate it without internalization. Finally, we overexpressed the wild-type and cytosolic-form of PTP1B to determine the role of ER-anchoring of PTP1B, and found that both inhibited insulin signaling equally. Thus, our data indicate that localization of PTP1B at the ER is not needed for insulin receptor dephosphorylation by PTP1B.  相似文献   

17.
18.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

19.
Cysteinyl leukotrienes (CysLTs), slow-reacting substances of anaphylaxis, are lipid mediators known to possess potent proinflammatory action. Pharmacological studies using CysLTs indicate that at least two classes of G protein-coupled receptors (GPCRs), named CysLT(1) and CysLT(2), exist; the former is sensitive and the latter is resistant to the CysLT(1) antagonists currently used to treat asthma. Although the CysLT(1) receptor gene has been recently cloned, the molecular identity of the CysLT(2) receptor has remained elusive. Here we show that the pharmacological profile of an orphan GPCR (PSEC0146) is consistent with that of the CysLT(2) receptor. In human embryonic kidney 293 cells that express the PSEC0146 cDNA, leukotriene C(4) (LTC(4)) and leukotriene D(4) (LTD(4)) induce equal increases in intracellular calcium mobilization; these increases are not affected by CysLT(1) antagonists. Additionally, [(3)H]LTC(4) specifically binds to membranes from COS-1 cells transiently transfected with PSEC0146. Large amounts of the PSEC0146 mRNA are found in human heart, placenta, spleen, and peripheral blood leukocytes but not in the lung and the trachea. Pharmacological feature and expression studies will eventually lead to a better understanding of the classification of CysLT receptors, possibly leading to a reconsideration of the pathological and physiological role of CysLTs.  相似文献   

20.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号