首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

2.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

3.
A study was made on the mass cultivation of Nannochloropsis sp. in newly designed annular reactors operated under natural, artificial or combined illumination. The annular reactor consists of two 2-m-high Plexiglas cylinders of different diameter placed vertically one inside the other so as to form an annular culture chamber. Artificial illumination is supplied by lamps placed inside the inner cylinder. Two annular reactors of different diameter (50 and 91 cm), light path (4.5 and 3.0 cm) and illuminated surface area (5.3 and 9.3 m2) were experimented with. The effect of two different artificial light sources (fluorescent tubes and metal halide lamps) on culture productivity was investigated in both systems. The highest productivity on a per reactor basis (about 34 g (d. wt) reactor–1 24 h–1) was achieved with the larger reactor illuminated by a 400-W metal halide lamp. From February to May a 91-cm reactor illuminated only with natural light was operated in parallel with a 91-cm reactor subjected to combined illumination. Under natural illumination productivity increased from 16.6 g (d. wt) reactor–1 d–1 in February to 34.1 g (d. wt) reactor–1 d–1 in May. Under combined illumination productivity was 41.3 g (d. wt) reactor–1 d–1 in February and increased up to 48.3 g (d. wt) reactor–1 d–1 in May. Although the culture exposed to combined illumination always attained higher yields, the productivity gap between the two cultures decreased gradually along the season as solar radiation and minimum night temperatures increased. A 1200-L plant made of ten 50-cm annular reactors was set up and operated for two years with combined illumination yielding an average of 270 g of dry Nannochloropsis sp. biomass per day. More than 2000 L of concentrate suspension (50 g (d. wt) L–1) of Nannochloropsis sp. were produced and successfully used by fish hatcheries as live feed for rotifers and for rearing seabream larvae with the green-water technique. This study indicates that the annular reactor can be profitably used for long-term cultivation of Nannochloropsis in temperate climates. Besides reliability and ease of operation, the main advantage of the system is that it can be used under natural illumination, yet artificial light can be also supplied to maintain high productivity levels in winter or on cloudy days.  相似文献   

4.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   

5.
Studies were carried out for the production of aroma compounds by Kluyveromyces marxianus grown on cassava bagasse in solid state fermentation using packed bed reactors, testing two different aeration rates. Respirometric analysis was used to follow the growth of the culture. Headspace analysis of the culture by gas chromatography showed the production of 11 compounds, out of which nine were identified. Ethyl acetate, ethanol and acetaldehyde were the major compounds produced. Lower aeration rate (0.06l h–1 g–1 of initial dry matter) increased total volatile (TV) production and the rate of production was also increased at this aeration rate. Using an aeration rate of 0.06l h–1 g–1 maximum TV concentrations were reached at 24 h and at 40 h with 0.12l h–1 g–1.  相似文献   

6.
Two set of isolates were obtained in an isolation/selection programme to select eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) rich strains ofIsochrysis galbana. EPA content was improved up to an average of 5.3% (d.wt) for the second set of isolates. On the other hand, with the aeration rate, pH and irradiance kept at low levels, the growth rate was slow and EPA synthesis was enhanced, but productivity increased when growth rates were maximum. A model relating steady-state dilution rates in chemostat cultures ofI. galbana to internal average irradiance is proposed. The greatest productivities were obtained between 0.0295 h–1 and 0.0355 h–1 with 300 mg m–3 h–1 for EPA and 130 mg m–3 h–1 for DHA.  相似文献   

7.
Net productivity and biomass night losses in outdoor chemostat cultures ofPhaeodactylum tricornutum were analyzed in two tubular airlift photobioreactors at different dilution rates, photobioreactor surface/volume ratios and incident solar irradiance. In addition, an approximate model for the estimation of light profile and average irradiance inside outdoor tubular photobioreactors was proposed. In both photobioreactors, biomass productivity increased with dilution rate and daily incident solar radiation except at the highest incident solar irradiances and dilution rates, when photoinhibition effect was observed in the middle of the day. Variation of estimated average irradiance vs mean incident irradiance showed two effects: first, the outdoor cultures are adapted to average irradiance, and second, simultaneous photolimitation and photoinhibition took place at all assayed culture conditions, the extent of this phenomena being a function of the (incident)1 irradiance and light regime inside the culture. Productivity ranged between 0.50 and 2.04 g L–1 d–1 in the tubular photobioreactor with the lower surface/volume ratio (S/V = 77.5 m–1) and between 1.08 and 2.76 g L–1 d–1 in the other (S/V = 122.0 m–1). The optimum dilution rate was 0.040 h–1 in both reactors. Night-time biomass losses were a function of the average irradiance inside the culture, being lower in TPB0.03 than TPB0.06, due to a better light regime in the first. In both photobioreactors, biomass night losses strongly decreased when the photoinhibition effect was pronounced. However, net biomass productivity also decreased due to lower biomass generation during the day. Thus, optimum culture conditions were obtained when photolimitation and photoinhibition were balanced.  相似文献   

8.
Particularly high population densities are readily sustainable in newly designed glass column reactors. The optimal density ofIsochrysis galbana in these columns in summer was 4.6 g L–1 dry algal mass at which value the highest sustainable productivity obtained was a record of 1.6 g L–1 d–1. The population density exerted a direct effect on productivity: The higher the light intensity, the more pronounced was the dependence of the output rate on the population density, variations of 10%± from the optimal density resulting in a significant decline in productivity. The population density had also a very significant effect on the course of photoadaptation which took place during the first days after transferring the cultures from the laboratory to the outdoors. The output rate was lower by 5 to 35% on the first day of such transfer as compared to the light-adapted control. The higher the cell density, the faster was the process of photoadaptation as indicated by the rise of the productivity and O2 tension to the control level. The potential for excess light damages was most prominent in the column reactors used, in which the light path was much reduced compared with that in open raceways. Significant photoinhibition took place at below optimal population density (2.8–3.8 g L–1), and when cell density was further reduced (1.9 to 1.1 g L–1), exposure to full sunlight caused photooxidative death within a few hours. The pattern of O2 concentration in the culture that emerged along the day served as a useful indicator of photolimitation.Author for correspondence  相似文献   

9.
Continuous ethanol fermentations were performed in duplicate for 60 days withZymomonas mobilis ATCC 331821 orSaccharomyces cerevisiae ATCC 24859 in packed-bed reactors with polypropylene or plastic composite-supports. The plastic composite-supports used contained polypropylene (75%) with ground soybean-hulls (20%) and zein (5%) forZ. mobilis, or with ground soybean-hulls (20%) and soybean flour (5%) forS. cerevisiae. Maximum ethanol productivities of 536 gL–1 h–1 (39% yield) and 499 gL–1 h–1 (37% yield) were obtained withZ. mobilis on polypropylene and plastic composite-supports of soybean hull-zein, respectively. ForZ. mobilis, and optimal yield of 50% was observed at a 1.92h–1 dilution rate for soybean hull-zein plastic composite-supports with a productivity of 96gL–1h–1, whereas with polypropylene-supports the yield was 32% and the productivity was 60gL–1h–1. With aS. cerevisiae fermentation, the ethanol production was less, with a maximum productivity of 76gL–1h–1 on the plastic composite-support at a 2.88h–1 dilution rate with a 45% yield. Polypropylene-support bioreactors were discontinued due to reactor plugging by the cell mass accumulation. Support shape (3-mm chips) was responsible for bioreactor plugging due to extensive biofilm development on the plastic composite-supports. With suspensionculture continuous fermentations in continuously-stirred benchtop fermentors, maximum productivities of 5gL–1h–1 were obtained with a yield of 24 and 26% withS. cerevisiae andZ. mobilis, respectively. Cell washout in suspensionculture continuous fermentations was observed at a 1.0h–1 dilution rate. Therefore, for continuous ethanol fermentations, biofilm reactors out-performed suspension-culture reactors, with 15 to 100-fold higher productivities (gL–1h–1) and with higher percentage yields forS. cerevisiae andZ. mobilis, respectively. Further research is needed with these novel supports to evaluate different support shapes and medium compositions that will permit medium flow, stimulate biofilm formation, reduce fermentation costs, and produce maximum yields and productivities.This is Journal Paper No. J-16357 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

10.
Outdoor chemostat cultures of the marine microalgaIsochrysis galbana at constant dilution rate (0.034 h–1 ) have been carried out under different weather conditions. Steady-state biomass concentrations were 1.61±0.03 kg m–3 in May and 0.95±0.04 kg m–3 in July, resulting in biomass output rates of 0.54 kg m–3 d–1 and 0.32 kg m–3 d–1 in May and July, respectively. Two patterns of daily variation with the solar cycle were observed in the fatty acid content. Saturated and mono-unsaturated fatty acids (16:0 and 16:1n7) show significant variation with the solar cycle, associated with short-term changes in environmental factors. Palmitic and palmitoleic acids are generated during daylight and consumed during the dark period. However, polyunsaturated fatty acids do not show a significant response to the solar cycle and their changes are associated with long-term variation in environmental factors. The maximum EPA productivity was obtained in May, 14.1 g m–3 d–1, which is close to that found in the literature for indoor continuous cultures. Nonetheless, the outdoor EPA content (up to 2.61 % d.wt) was lower than the indoor EPA content from a previous study (5% d.wt).  相似文献   

11.
Korstad  J.  Neyts  A.  Danielsen  T.  Overrein  I.  Olsen  Y. 《Hydrobiologia》1995,313(1):395-398
This study evaluated the use of egg ratio (eggs rotifer–1) and swimming speed (mm min–1) as prediction criteria for production and culture quality in mass cultures of the rotifer Brachionus plicatilis. Egg ratio was determined to be a suitable predictor of rotifer growth and production in the cultures. Low egg ratios (i.e., 0–0.17 eggs rotifer–1) indicate reduced rotifer population over time (i.e., negative net population growth rates). However, at this time egg ratio dynamics are not suitably understood to predict in advance a sudden population collapse.Swimming speed of reproductive, egg-carrying females in the exponential growth phase was 40–45 mm min–1. During exponential growth swimming speed was independent of the food used. Lower swimming speeds were obtained in late stationary phase (10–25 mm min–1) when yeast was used as a food source. Both environmental factors (e.g., accumulating metabolites) and changes in nutritional state of the rotifers may have affected the swimming speed, but environmental factors appear to be the most important. We believe that swimming speed has the potential of becoming an accurate predictor of culture quality in mass cultures of rotifers.  相似文献   

12.
Arachidonic acid (AA) is a precursor of biologically activeprostaglandines and leukotrienes. The commercial source for AA at present is afungus, but the recently discovered coccoid green alga,Parietochlorisincisa comb. nov., in which over 90% of total AA is deposited intriacylglycerols, makes this species a potential candidate for commercialproduction of AA. We investigated the effect of the light-regime on cell-AAcontent and on culture productivity, by manipulating the intensity of the lightsource, the length of the light-path (LPL), and the population density ofcultures grown in flat plate glass reactors under both controlled laboratoryconditions (continuously illuminated) as well as outdoors. The effect ofnitrogen deprivation on culture content of AA and its productivity was alsostudied.In all experiments, the longer light-path reactors with the highest arealvolumes (L m–2) yielded the highest culture-AA or the highestamount of AA harvested per illuminated reactor surface. Highest culture contentof AA was obtained in cultures exposed to strong light andnitrogen-deprivation.In contrast, highest cell-AA content was obtained in cultures receiving thelowest light-dose. Maximum culture content of AA obtained in the laboratory was2667 mg L–1, reached after a 38-day growth period(of which the final 17 days took place in nitrogen-free medium), undercontinuous exposure to 2000 mol photon m–2s–1. Maximal culture content of AA outdoors wassignificantly lower compared with the maximum obtained in the laboratory.  相似文献   

13.
Undaria pinnatifida gametophytes were grown in 2.5 l bubble column and airlift reactor at 25 °C and light intensity of 40 mol m–2 s–1 for 6 days. With aeration at 1 l min–1, the airlift reactor yielded higher growth rate (0.12 mg DW ml–1 d–1) than a bubble column (0.08 mg DW ml–1 d–1). The advantages were related to the more homogeneous fluid dynamic characteristics of the airlift reactor.  相似文献   

14.
An evaluation was made of the annual productivity of Spirulina (Arthrospira) and its ability to remove nutrients in outdoor raceways treating anaerobic effluents from pig wastewater under tropical conditions. The study was based at a pilot plant at La Mancha beach, State of Veracruz, Mexico. Batch or semi-continuous cultures were established at different seasons during four consecutive years. The protein content of the harvested biomass and the N and P removal from the ponds were also evaluated. Anaerobic effluents from digested pig waste were added in a proportion of 2% (v/v) to untreated sea-water diluted 1:4 with fresh water supplemented with 2 g L–1 sodium bicarbonate, at days 0, 3 and 5. A straight filament strain of Spirulina adapted to grow in this complex medium was utilized. A pH value 9.5 ± 0.2 was maintained. The productivity of batch cultures during summer 1998 was significantly more with a pond depth of 0.10 m than with a depth 0.065 m. The average productivity of semi-continuous cultures during summer 1999 was 14.4 g m–2 d–1 with a pond depth of 0.15 m and 15.1 g m–2 d–1 with a depth of 0.20 m. The average annual productivity for semi-continuous cultures operating with depths of 0.10 m for winter and 0.15 and 0.25 m for the rest of the year, was 11.8 g m–2 d–1. This is the highest value reported for a Spirulina cultivation system utilising sea-water. The average protein content of the semi-continuous cultures was 48.9% ash-free dry weight. NH4-N removal was in the range 84–96% and P removal in the range of 72–87%, depending on the depth of the culture and the season.  相似文献   

15.
Continuous cultures of Chaetoceros muelleri and Isochrysis galbana were grown outdoors in flat plate-glass reactors in which light-path length (LPL) varied from 5 to 30 cm. High daily productivity (13 to 16 g cell mass per square meter of irradiated reactor surface) for long periods of time was obtained in reactors in which the optical path as well as cell density were optimized. 'Twenty centimeters was the optimal LPL, yielding the highest areal productivity of cell mass (g m–2d–1), eicosapentaenoic acid, and docosahexaenoic acid, which was identical with that previously found for polysaccharide production of Porphyridium and not far from the optimal LPL affecting maximal productivity in Nannochloropsis species. Relating the energy impinging on a given reactor surface area to the appropriate number of cells showed that the most efficient light dose per cell, obtained with the 20-cm LPL reactor, was approximately 2.5 times lower than the light dose available per cell in the 5-cm LPL reactor, in which a significant decline in areal cell density accompanied the lowest areal output of cell mass. The most effective harvesting regimen was in the range of 10% to 15% of culture volume harvested daily and replaced with fresh growth medium, resulting in a sustainable culture density of 24 × 106 and 28 × 106 cells/ml of C. muelleri and I. galbana, respectively.  相似文献   

16.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

17.
The feasibility of using fish farm effluents was evaluated as a source of inorganic nutrients for mass production of marine diatoms. Batch cultures were conducted from May to July 1995 in 16-L outdoor rectangular tanks, homogenized by gentle aeration (0.2 L air L–1 h–1). The effluents from the two fish farms studied were both characterized by high concentrations of inorganic materials (NH4-N, PO4-;P, Si(OH)4-Si) and were shown to support production of marine diatoms. Moreover, periodic measurements of inorganic matter levels in the cultures showed that clearance was efficacious (90% in 3–5 days). Water purification efficiency and culture productivity were further increased through appropriate nutrient balancing. When effluents were limited in silicate, addition of Na2SiO3 induced a significant increase in both diatom biomass and nutrient removal efficiency. In this case, up to 720 000 cell mL–1 were produced dominated bySkeletonema costatum. By contrast, in effluents loaded with silicate, adjustment of the N:P:Si ratio by NH4-N and PO4-P supplementation then gave increased biomass production. In this case, the maximum cell density found was 450 000 cell mL–1, dominated byChaetoceros spp.Author for correspondence  相似文献   

18.
Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l–1). After 54 h, xylitol production from 30.5 g xylose l–1 reached 27.5 g l–1, resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g–1 and a productivity of 0.5 g l–1 h–1.  相似文献   

19.
Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min–1.g weight–1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.  相似文献   

20.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号