首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the interaction between the ion channels and transporters in the salivary fluid secretion, we measured the membrane voltage (V(m)) and intracellular concentrations of Ca(2+), Na(+) ([Na(+)](c)), Cl(-), and H(+) (pH(i)) in rat submandibular gland acini (RSMGA). After a transient depolarization induced by a short application of acetylcholine (ACh; 5 muM, 20 s), RSMGA showed strong delayed hyperpolarization (V(h,ACh); -95 +/- 1.8 mV) that was abolished by ouabain. In the HCO(3)(-)-free condition, the V(h,ACh) was also blocked by bumetanide, a blocker of Na(+)-K(+)-2Cl(-) cotransporter (NKCC). In the presence of HCO(3)(-) (24 meq, bubbled with 5% CO(2)), however, the V(h,ACh) was not blocked by bumetanide, but it was suppressed by ethylisopropylamiloride (EIPA), a Na(+)/H(+) exchanger (NHE) inhibitor. Similarly, the ACh-induced increase in [Na(+)](c) was totally blocked by bumetanide in the absence of HCO(3)(-), but only by one-half in the presence of HCO(3)(-). ACh induced a prominent acidification of pH(i) in the presence of HCO(3)(-), and the acidification was further increased by EIPA treatment. Without HCO(3)(-), an application of ACh strongly accelerated the NKCC activity that was measured from the decay of pH(i) during the application of NH(4)(+) (20 mM). Notably, the ACh-induced activation of NKCC was largely suppressed in the presence of HCO(3)(-). In summary, the ACh-induced anion secretion in RSMGA is followed by the activation of NKCC and NHE, resulting an increase in [Na(+)](c). The intracellular Na(+)-induced activation of electrogenic Na(+)/K(+)-ATPase causes V(h,ACh). The regulation of NKCC and NHE by ACh is strongly affected by the physiological level of HCO(3)(-).  相似文献   

2.
Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.  相似文献   

3.
The loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial HCO(3)(-) secretion contributes to the pathogenesis of pancreatic and biliary disease in cystic fibrosis (CF) patients. Recent studies have investigated P2Y(2) nucleotide receptor agonists, e.g., UTP, as a means to bypass the CFTR defect by stimulating Ca(2+)-activated Cl(-) secretion. However, the value of this treatment in facilitating transepithelial HCO(3)(-) secretion is unknown. Gallbladder mucosae from CFTR knockout mice were used to isolate the Ca(2+)-dependent anion conductance during activation of luminal P2Y(2) receptors. In Ussing chamber studies, UTP stimulated a transient peak in short-circuit current (I(sc)) that declined to a stable plateau phase lasting 30-60 min. The plateau I(sc) after UTP was Cl(-) independent, HCO(3)(-) dependent, insensitive to bumetanide, and blocked by luminal DIDS. In pH stat studies, luminal UTP increased both I(sc) and serosal-to-mucosal HCO(3)(-) flux (J(s-->m)) during a 30-min period. Substitution of Cl(-) with gluconate in the luminal bath to inhibit Cl(-)/HCO(3)(-) exchange did not prevent the increase in J(s-->m) and I(sc) during UTP. In contrast, luminal DIDS completely inhibited UTP-stimulated increases in J(s-->m) and I(sc). We conclude that P2Y(2) receptor activation results in a sustained (30-60 min) increase in electrogenic HCO(3)(-) secretion that is mediated via an intracellular Ca(2+)-dependent anion conductance in CF gallbladder.  相似文献   

4.
Because of its possible importance in cystic fibrosis (CF) pulmonary pathogenesis, the effect of anion and liquid secretion inhibitors on airway mucociliary transport was examined. When excised porcine tracheas were treated with ACh to induce gland liquid secretion, the rate of mucociliary transport was increased nearly threefold from 2.5 +/- 0.5 to 6.8 +/- 0.8 mm/min. Pretreatment with both bumetanide and dimethylamiloride (DMA), to respectively inhibit Cl(-) and HCO secretion, significantly reduced mucociliary transport in the presence of ACh by 92%. Pretreatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid similarly reduced mucociliary transport in ACh-treated airways by 97%. These agents did not, however, reduce ciliary beat frequency. Luminal application of benzamil to block liquid absorption significantly attenuated the inhibitory effects of bumetanide and DMA on mucociliary transport. We conclude that anion and liquid secretion is essential for normal mucociliary transport in glandular airways. Because the CF transmembrane conductance regulator protein likely mediates Cl(-), HCO, and liquid secretion in normal glands, we speculate that impairment of gland liquid secretion significantly contributes to defective mucociliary transport in CF.  相似文献   

5.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.  相似文献   

6.
The present study was undertaken to identify and determine the mechanism of noncholinergic pathways for the induction of liquid secretion across airway epithelium. Excised porcine bronchi secreted substantial and significant quantities of liquid when exposed to acetylcholine, substance P, or forskolin but not to isoproterenol, norepinephrine, or phenylephrine. Bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransport, reduced the liquid secretion response to substance P by 69%. Approximately two-thirds of bumetanide-insensitive liquid secretion was blocked by dimethylamiloride (DMA), a Na(+)/H(+) exchange inhibitor. Substance P responses were preserved in airways after surface epithelium removal, suggesting that secreted liquid originated from submucosal glands. The anion channel blockers diphenylamine-2-carboxylate (DPC) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) inhibited >90% of substance P-induced liquid secretion, whereas DIDS had no effect. DMA, DPC, and NPPB had greater inhibitory effects on net HCO(3)(-) secretion than on liquid secretion. Although preserved relative to liquid secretion, net HCO(3)(-) secretion was reduced by 39% in the presence of bumetanide. We conclude that substance P induces liquid secretion from bronchial submucosal glands of pigs through active transport of Cl(-) and HCO(3)(-). The pattern of responses to secretion agonists and antagonists suggests that the cystic fibrosis transmembrane conductance regulator mediates this process.  相似文献   

7.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

8.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

9.
Evidence for the participation of conductive and non-conductive (exchange) transmembrane anion pathways in the luminal acidification, alkalinization, and chloride-reabsorptive functions of the turtle bladder is provided from the pattern of Cl- -induced changes in transepithelial electrical parameters of isolated urinary bladders from three groups of donor turtles: control or post-absorptive turtles (those killed 5 days after feeding); acidotic turtles (NH4Cl-loaded); and alkalotic turtles (NaHCO3-loaded). The predominance of each of the three aforementioned transport functions as well as the response to Cl- -addition is altered by the in-vivo electrolyte balance of the turtle. In post-absorptive bladders, which are poised for acidification and Cl- reabsorption, the mucosal and serosal addition of Cl- to Na+-free, (HCO3- + CO2)-containing media increases the negative short-circuiting current (Isc). In acidotic bladders, which are poised for acidification but not Cl- reabsorption, mucosal Cl- addition has no effect on this Isc whereas serosal Cl- addition increases the negative Isc in a manner identical to that observed in the post-absorptive bladders. Alkalotic bladders do not possess an acidification function but instead are poised for Cl- reabsorption and cAMP-dependent electrogenic alkali secretion (positive Isc). In these bladders, serosal Cl- addition is without effect while mucosal Cl- addition produces transient changes in this positive Isc. It is found that these results can be replicated by a model of the turtle bladder in which transmembrane Cl- and HCO3- conductive and exchange paths mediate transepithelial acidification, alkalinization and Cl- reabsorption.  相似文献   

10.
Larval Lepidoptera generate a large pH gradient across the midgut epithelium. The in vitro rate of luminal alkalinization (J(OH-)) and hemolymph acidification (J(H+)) under nominally CO(2)-free conditions was measured in the three morphologically distinct regions of the tobacco hornworm midgut. Under open-circuit conditions, the highest J(OH-) and J(H+) was observed in the anterior section and the lowest was in the middle section. In all three sections the J(H+) was equal to J(OH-) indicating transepithelial movement of acid or base equivalents. Furthermore, the rate at which the midgut transported acid or base was the same under open- and short-circuit conditions, indicating that acid/base transport is an active process. Although the inhibitors, acetazolamide and ethoxyzolamide, inhibited the activity of carbonic anhydrase in tissue homogenates, they had no effect on J(OH-), J(H+), or transepithelial potential. Therefore, under the nominally CO(2)-free conditions of this study, it is unlikely that hydration of CO(2) and the formation of HCO(3)(-) is involved in luminal alkalinization.  相似文献   

11.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

12.
The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.  相似文献   

13.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

14.
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.  相似文献   

15.
We hypothesized that duodenal HCO(3)(-) secretion alkalinizes the microclimate surrounding intestinal alkaline phosphatase (IAP), increasing its activity. We measured AP activity in rat duodenum in situ in frozen sections with the fluorogenic substrate ELF-97 phosphate and measured duodenal HCO(3)(-) secretion with a pH-stat in perfused duodenal loops. We examined the effects of the IAP inhibitors L-cysteine or L-phenylalanine (0.1-10 mM) or the tissue nonspecific AP inhibitor levamisole (0.1-10 mM) on AP activity in vitro and on acid-induced duodenal HCO(3)(-) secretion in vivo. AP activity was the highest in the duodenal brush border, decreasing longitudinally to the large intestine with no activity in stomach. Villous surface AP activity measured in vivo was enhanced by PGE(2) intravenously and inhibited by luminal L-cysteine. Furthermore, incubation with a pH 2.2 solution reduced AP activity in vivo, whereas pretreatment with the cystic fibrosis transmembrane regulator (CFTR) inhibitor CFTR(inh)-172 abolished AP activity at pH 2.2. L-Cysteine and L-phenylalanine enhanced acid-augmented duodenal HCO(3)(-) secretion. The nonselective P2 receptor antagonist suramin (1 mM) reduced acid-induced HCO(3)(-) secretion. Moreover, L-cysteine or the competitive AP inhibitor glycerol phosphate (10 mM) increased HCO(3)(-) secretion, inhibited by suramin. In conclusion, enhancement of the duodenal HCO(3)(-) secretory rate increased AP activity, whereas inhibition of AP activity increased the HCO(3)(-) secretory rate. These data support our hypothesis that HCO(3)(-) secretion increases AP activity by increasing local pH at its catalytic site and that AP hydrolyzes endogenous luminal phosphates, presumably ATP, which increases HCO(3)(-) secretion via activation of P2 receptors.  相似文献   

16.
The interlobular duct cells of the guinea-pig pancreas secrete HCO(3)(-) across their luminal membrane into a HCO(3)(-)-rich (125 mM) luminal fluid against a sixfold concentration gradient. Since HCO(3)(-) transport cannot be achieved by luminal Cl-/HCO(3)(-) exchange under these conditions, we have investigated the possibility that it is mediated by an anion conductance. To determine whether the electrochemical potential gradient across the luminal membrane would favor HCO(3)(-) efflux, we have measured the intracellular potential (V(m)) in microperfused, interlobular duct segments under various physiological conditions. When the lumen was perfused with a 124 mM Cl- -25 mM HCO(3)(-) solution, a condition similar to the basal state, the resting potential was approximately -60 mV. Stimulation with dbcAMP or secretin caused a transient hyperpolarization (approximately 5 mV) due to activation of electrogenic Na+-HCO(3)(-) cotransport at the basolateral membrane. This was followed by depolarization to a steady-state value of approximately -50 mV as a result of anion efflux across the luminal membrane. Raising the luminal HCO(3)(-) concentration to 125 mM caused a hyperpolarization (approximately 10 mV) in both stimulated and unstimulated ducts. These results can be explained by a model in which the depolarizing effect of Cl- efflux across the luminal membrane is minimized by the depletion of intracellular Cl- and offset by the hyperpolarizing effects of Na+-HCO(3)(-) cotransport at the basolateral membrane. The net effect is a luminally directed electrochemical potential gradient for HCO(3)(-) that is sustained during maximal stimulation. Our calculations indicate that the electrodiffusive efflux of HCO(3)(-) to the lumen via CFTR, driven by this gradient, would be sufficient to fully account for the observed secretory flux of HCO(3)(-).  相似文献   

17.
cAMP-elevating agents such as forskolin and vasoactive intestinal peptide induce liquid secretion by tracheobronchial submucosal glands. This pathway is thought to be CFTR dependent and thus defective in cystic fibrosis; however, the ionic mechanism that drives this secretion process is incompletely understood. To better define this mechanism, we studied the effects of ion transport inhibitors on the forskolin-induced liquid secretion response (Jv) of porcine distal bronchi. The forskolin-induced Jv was driven by a combination of bumetanide-sensitive Cl- secretion and DIDS-sensitive HCO3- secretion. When Cl- secretion was inhibited with bumetanide, Na+/H+ exchange-dependent HCO3- secretion was apparently induced to compensate for the loss of Cl- secretion. The forskolin-induced Jv was significantly inhibited by the anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, and glibenclamide. We conclude that the forskolin-induced Jv shares many characteristics of cholinergically induced secretion except for the presence of a DIDS-sensitive component. Although the identity of the DIDS-sensitive component is unclear, we speculate that it represents a basolateral membrane Na+ -HCO3- cotransporter or an Na+-dependent anion exchanger, which could account for transepithelial HCO3- secretion.  相似文献   

18.
Turtle bladders bathed on both surfaces with identical HCO3-/CO2-rich, Cl--free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 microM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents, inhibits the concurrent acidification process as well.  相似文献   

19.
Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.  相似文献   

20.
We investigated the cyclooxygenase (COX) isoforms as well as prostaglandin E receptor EP subtypes responsible for acid-induced gastric HCO(3)(-) secretion in rats and EP receptor-knockout (-/-) mice. Under urethane anesthesia, a chambered stomach (in the presence of omeprazole) was perfused with saline, and HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved by exposing the stomach for 10 min to 50 or 100 mM HCl. Acidification of the mucosa increased the secretion of HCO(3)(-) in the stomach of both rats and WT mice, in an indomethacin-inhibitable manner. The acid-induced gastric HCO(3)(-) secretion was inhibited by prior administration of indomethacin and SC-560 but not rofecoxib in rats and mice. Acidification increased the PGE(2) content of the rat stomach, and this response was significantly attenuated by indomethacin and SC-560 but not rofecoxib. This response was also attenuated by ONO-8711 (EP1 antagonist) but not AE3-208 (EP4 antagonist) in rats and disappeared in EP1 (-/-) but not EP3 (-/-) mice. PGE(2) increased gastric HCO(3)(-) secretion in both rats and WT mice, and this action was inhibited by ONO-8711 and disappeared in EP1 (-/-) but not EP3 (-/-) mice. These results support a mediator role for endogenous PGs in the gastric response induced by mucosal acidification and clearly indicate that the enzyme responsible for production of PGs in this process is COX-1. They further show that the presence of EP1 receptors is essential for the increase in the secretion of HCO(3)(-) in response to mucosal acidification in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号