首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis‐induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham‐operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p‐Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p‐Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p‐Smad2 levels. Of note, total and p‐Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well. J. Cell. Biochem. 111: 1059–1073, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
We employed the technique of dot blot hydridization of radiolabeled cDNA probes to examine the role of specific mRNA content in the control of extracellular matrix turnover in the remodeling rat lung. Following bleomycin instillation, total RNA content gradually doubled during the first 5 days following the initial lung injury, then rose much more rapidly during the ensuing 9 days. Individual mRNAs for procollagens I and III and for fibronectin were selectively enriched 2- to 4-fold above total RNA during the first week after bleomycin instillation. No comparable increases were observed in specific RNAs from liver, indicating that the response observed in the lung was not generalized to other organs. Moreover, the increases in mRNA species for procollagen types I or III in the lung could not be related to the influx of inflammatory cells which migrate into the lungs during acute injury, as cells obtained by alveolar lavage contained no mRNAs for procollagens.  相似文献   

3.
Effects of exogenous cortisol on drinking rate and water content in developing larvae of tilapia (Oreochromis mossambicus) were examined. Both freshwater- and seawater-adapted larvae showed increases in drinking rates with development. Drinking rates of seawater-adapted larvae were about four- to ninefold higher than those of freshwater-adapted larvae from day 2 to day 5 after hatching. Seawater-adapted larvae showed declines in drinking rate and water content at 4 and 14 h, respectively, after immersion in 10 mg L(-1) cortisol. In the case of freshwater-adapted larvae, the drinking rate decreased after 8 h of cortisol immersion, while the water content did not show a significant change even after 32 h of cortisol immersion. In a subsequent experiment of transfer from freshwater to 20 ppt (parts per thousand, salinity) seawater, immersion in 10 mg L(-1) cortisol for 8-24 h enhanced the drinking rate in larvae at 4 h after transfer, but no significant difference was found in water contents between cortisol-treated and control groups following transfer. These results suggest that cortisol is involved in the regulation of drinking activity in developing tilapia larvae.  相似文献   

4.
The yolk diameter of cortisol-treated tilapia (Oreochromis mossambicus) larvae, immersed in freshwater (FW) containing 10 mg L-1 cortisol from 48 h postfertilization to 12 d posthatching, was significantly larger than that of control larvae after 8 d of treatment, suggesting that inhibition on larval growth occurred only after a long-term treatment with cortisol. Tilapia embryos or larvae treated with 1-10 mg L-1 cortisol for 1-2 d and then transferred to 20-30 g L-1 seawater (SW) showed reduced cumulative larval mortality in SW compared with controls. Moreover, 4-5 d of cortisol treatments significantly diminished the degree of increase in larval body Na content after the transfer to SW. Significant effect of cortisol on body Na content of larvae occurred as early as 4-8 h after the transfer to SW, while no significant difference was found in the ouabain binding of yolk-sac epithelia between control and cortisol-treated larvae even 12 h after the transfer. Cortisol may be involved in the early phase of SW adaptation in developing larvae, and this mechanism may be achieved by other means than increasing the Na-K-ATPase of yolk-sac epithelia.  相似文献   

5.
Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures. When treated for 4 day periods on days 10 and 17, RA increased levels of an ∼70 kDa gelatinase activity. The N-terminal sequence of the first 20 amino acid residues of the purified enzyme was identical to that deduced from chicken MMP-2 cDNA. Time-course studies indicated that RA elevated MMP-2 activity levels in the cultures within 16 h. This increase was inhibited by cycloheximide and was enhanced by forskolin. The increase in MMP-2 activity induced by RA was accompanied by an increase in MMP-2 mRNA levels and was abolished by treatment with cycloheximide. This upregulation of MMP levels by RA in GP chondrocytes is consistent with its effects on osteoblasts and osteosarcoma cells and opposite its inhibitory effects on fibroblasts and endothelial cells. It may well be related to the breakdown of the extracellular matrix in the GP and would be governed by the availability of RA at the calcification front where extensive vascularization also occurs. J. Cell. Biochem. 68:90–99, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Ghrelin is an important endocrine peptide that links the gastrointestinal system and brain in the regulation of food intake and energy expenditure. In human, rat, and goldfish plasma levels of ghrelin and GH are elevated in fasted animals, suggesting that ghrelin is an orexigenic signal and a driving force behind the elevated plasma levels of GH during fasting. Ghrelin's orexigenic action is mediated by the ghrelin receptor (GHS-R1a and GHS-R1b) which is localized on neuropeptide Y (NPY) neurons in the brain. Studies were undertaken to investigate the effect of short-term fasting on plasma ghrelin and brain expression of GHS-R1a, GHS-R1b, and NPY in the tilapia. Fasting for 7 days had no effect on plasma ghrelin concentrations, whereas significant increases in plasma levels of GH were observed on day 3. Fasting significantly reduced plasma levels of IGF-I on days 3 and 7, and of glucose on days 3, 5, and 7. Brain expression of ghrelin and GHS-R1b were significantly elevated in fasted fish on day 3, but were significantly reduced on day 5. This reduction was likely due to a significant increase in the expression in the fed controls on day 5 compared to day 0. No change was detected in the expression of GHS-R1a or NPY in the brain. These results indicate that ghrelin is not acting as a hunger signal in short-term fasted tilapia and is not responsible for the elevated levels of plasma GH.  相似文献   

7.
This study investigated the roles of cortisol and growth hormone (GH) during a period of fasting in overwintering salmonid fish. Indices of carbohydrate (plasma glucose, liver glycogen), lipid (plasma free fatty acids (FFAs)) and protein metabolism (plasma protein, total plasma amino acids) were determined, together with plasma GH, cortisol and somatolactin (SL) levels at intervals in three groups of rainbow trout (continuously fed; fasted for 9 weeks then fed; fasted for 17 weeks). In fasted fish, a decline in body weight and condition factor was accompanied by reduced plasma glucose and hepatic glycogen and increased plasma FFA. No consistent elevation of plasma GH occurred until after 8 weeks of fasting when plasma GH levels increased ninefold. No changes were observed in plasma total protein and AA until between weeks 13 and 17 when both were reduced significantly. When previously fasted fish resumed feeding, plasma glucose and FFA, and hepatic glycogen levels rapidly returned to control values and weight gain resumed. No significant changes in plasma cortisol levels, related to feeding regime, were evident at any point during the study and there was no evidence that SL played an active role in the response to fasting. The results suggest that overwinter fasting may not represent a significant nutritional stressor to rainbow trout and that energy mobilisation during fasting may be achieved without the involvement of GH, cortisol or SL.  相似文献   

8.
Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, a typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains. Alternatively, fasting did not affect glucose levels in SJA and WIK zebrafish strains. Similarly, fasting had no effect on myostatin mRNA levels in AB, PET, TU, and WIK zebrafish strains, but decreased myostatin-1 and ? 2 mRNA levels in SJA zebrafish. Consistent with previous work, fasting increased myostatin-2 mRNA levels in TL zebrafish. These data demonstrate that variation is present in growth performance between commonly used inbred strains of zebrafish. These data can help future research endeavors by highlighting the attributes of each strain with regard to growth performance so that the most fitting strain may be utilized.  相似文献   

9.
10.
11.
The effects of interferon-alpha and interferon-gamma on collagen synthesis and mRNA levels of type I and type III procollagens were studied in skin fibroblasts cultured from affected and unaffected skin sites of two patients with localized scleroderma (morphea). Both scleroderma cell lines exhibited elevated type I and type III procollagen mRNA levels to account for the increased procollagen synthesis, when compared to the unaffected controls. Interferon-gamma treatment resulted in a dose-dependent reduction in collagen synthesis and procollagen mRNA levels in scleroderma fibroblasts. A 72-h exposure to interferon-gamma reduced procollagen mRNA levels in the scleroderma fibroblast lines to the levels exhibited by the unaffected control fibroblasts. The suppressive effect of interferon-alpha on procollagen mRNA levels was somewhat weaker than that of interferon-gamma. The results suggest potential use of interferon-gamma in treatment and prevention of human fibrotic conditions.  相似文献   

12.
Protein is the most costly nutrient in fish feed, and while diets offered in the early stages of development typically have high levels of CP, they do not always correspond to the real requirements of the animals. Thus, research that seeks to learn the true nutritional requirements of fish is fundamental to improving commercial fish culture. The present study evaluated the protein requirements of Nile tilapia (Oreochromis niloticus) under larviculture. Fish performance, gene expression for digestive enzymes and their enzymatic activity and stress response to air exposure were analyzed. Four experimental diets differing in CP level were formulated: 30%, 36%, 42% and 48%. Fish larvae were fed the experimental diets during development and sampled 10, 20 and 30 days after the beginning of the experiment for performance, gene expression and enzymatic activity. At sampling time 30, stress resistance was also evaluated by means of an air exposure test. At sampling time 10, CP levels between 36% and 48% could be used for a better performance. During this period, pepsinogen expression was greater for 30% CP, intermediate for 42% and lower for 36% and 48%. After this initial period, diets of between 30% and 42% CP are recommended for better performance. At sampling time 20, gene expression for digestive enzymes and their enzymatic activity were similar for all diets tested. At sampling time 30, the diet of 42% CP induced both greater pepsinogen expression and pepsin activity. Survival after the air exposure test after 30 days of feeding was influenced by CP level in the diet, with the highest survival being for fish fed with 36% CP. Taken together, the present results demonstrate that dietary CP influences digestive enzyme gene expression and activity, and suggest that the best CP levels for Nile tilapia larviculture vary depending on larval stage.  相似文献   

13.
Mozambique tilapia Oreochromis mossambicus were housed individually during 7 days in a continuous flow-trough respirometry system and daily exposed to one of three treatments: (1) a series of knocks on the side of the aquarium, (2) a series of photo-flashes and (3) control group. Exposure to photo-flashes did not change locomotor activity but decreased both night-time and daytime oxygen consumption throughout the experiment. Knocking induced a short-lived increase in locomotor activity and tended to increase oxygen consumption, but this latter effect was not significant. Night-time oxygen consumption was not affected by knocking exposure. Cortisol levels assayed from fish-holding water collected at the end of the experiment were significantly lower in subjects exposed to photo-flashes than in subjects exposed to knocks or controls. Males did not respond differently than females to the treatments in any of the measurements taken. In summary, the data reported here suggest that exposure to repetitive photo-flashes, but not knocking, suppressed normal energy metabolism and cortisol levels. These effects were present hours to a half day after exposure to the flashes.  相似文献   

14.
The entry and metabolism of 3H-cortisol in oocytes were investigated using isolated follicles of the tilapia (Oreochromis mossambicus) in order to examine the mechanisms of incorporation of maternal hormones into oocytes. The composition of 3H-labeled steroids in the oocyte was analyzed by high-performance liquid chromatography. A significant amount of cortisol was converted to cortisone and an unidentified molecule by the follicular layer. The contents of 3H-cortisol and 3H-cortisone in the oocyte reached an equilibrium level within 12 hr, whereas the content of the unidentified metabolite continued to increase for 36 hr. The total content of the incorporated cortisol and its metabolites was proportional to cortisol in the medium over the concentration range of 5 ng/ml to 5 microg/ml. The amounts of cortisone and the unidentified molecule increased proportionally when the concentration of cortisol in the medium was lower than 500 ng/ml, whereas they reached a plateau when the concentration of cortisol exceeded 500 ng/ml. Cortisol entry was reversible, because 90% of cortisol and cortisone in the oocyte was lost within 18 hr when the medium was changed to that without 3H-cortisol. On the other hand, 50% of the unidentified molecule was preserved at the end of the incubation. In conclusion, the entry of cortisol into the oocyte was considered to be nonspecific and due probably to simple diffusion. However, a considerable amount of cortisol (50-70%) was specifically converted to cortisone and another unidentified molecule during passage through the follicular layer.  相似文献   

15.
The levels of serum monosaccharides (SMO) and hexuronic acids (SHA) were measured in subjects without any metabolic or endocrine disease after a short-time administration of cortisol, dexamethasone and ACTH. The effects of the three hormones were evaluated in regard to the urinary excretion of free cortisol and cortisone at basal conditions. In thirteen subjects a significant increase of SMO during cortisol treatment was registered after 24 hours. A distinct difference in the response of SMO to cortisol treatment was observed in patients with normal or increased cortisol excretion, respectively. In the subjects with high urinary free corticoids a peak of SMO occurred soon after 4 hours after cortisol administration, in the next 48 hours no tendency of return towards basal levels was observed. In the subjects with normal urinary free cortisol excretion only a slight increment was seen after 24 hours. Soon after 4 hours in eight subjects dexamethasone administration resulted in an increase of SMO without regard to the excretion of urinary free corticoids. The highest values were obtained after 28 hours of dexamethasone treatment. Ten hours after cessation of dexamethasone the levels of SMO reached the basal values. In the study in which ACTH was administered, an increment of SMO was registered only in the first four hours. In the group of subjects treated with ACTH a slight difference between subjects with normal and increased corticoid excretion was seen. The levels of SHA successively increased after the administration of all three hormones, without regard to the basal excretion of urinary free corticoids. This increase persisted also 10 hours after cessation of cortisol and dexamethasone, and 40 hours after the last dosis of ACTH, respectively. The possibility of an altered metabolism of glucose through the glucuronate pathway under conditions of glucocorticoid excess is discussed.  相似文献   

16.
To assess muscle breakdown during avian coccidiosis, the level of the nonmetabolizable amino acid 3-methylhistidine (3MH) was determined in muscle, plasma and excreta from chickens infected with Eimeria acervulina. The changes in 3MH levels during infection were assessed at 1-29 days postinoculation (DPI) in animals given 5 x 10(5) oocysts per bird. The effect of levels of parasitism were evaluated at 8 DPI in birds receiving 5 x 10(3), 5 x 10(4), 5 x 10(5) or 1 x 10(6) oocysts each. The 3MH levels of plasma, muscle, and excreta samples were determined by high-pressure liquid chromatography after derivatization with fluorescamine. Weight gains, breast muscle weight, eviscerated weight, plasma carotenoid levels, dry weight of muscle, and gross lesion scores were also determined. Infected birds had significantly elevated plasma and muscle 3MH at 4 and 8 DPI following a single dose of E. acervulina. The increase in 3MH levels had an inverse relationship with the time course of weight gain and plasma carotenoid levels. Plasma and muscle 3MH levels returned to control values by 15 DPI and remained unchanged from control values through the remainder of the experiment (29 DPI). Breast weight was decreased in infected birds, but the ratio of breast weight to eviscerated body weight was unchanged. Excretion of 3MH decreased relative to controls at 4 and 8 DPI and returned to control levels on 15 DPI. The plasma and muscle levels of 3MH were related to severity of infection; however, levels of excreted 3MH were not. The results suggested that muscle breakdown, as assessed by plasma and muscle levels of 3MH, increased during the acute stage of E. acervulina infection. The underlying causes for this muscle breakdown was unclear but could involve a physiological response to anorexia and decreased food intake during the acute phase of infection. Levels of excreted 3MH did not increase during infection and this may be the result of decreased excreta output during infection. Plasma and muscle levels of 3MH were correlated with severity of E. acervulina infections but may not be as sensitive an indicator of infection as plasma carotenoid levels or other physiological parameters.  相似文献   

17.
Similar to those of the gills of adults, three types of mitochondria-rich (MR) cells with different morphologies of apical surfaces (wavy convex, shallow basin, and deep hole) were identified on the integument of freshwater-acclimated tilapia larvae (Oreochromis mossambicus). The object of this study is to test the hypothesis that these subtype cells may represent MR cells equipped with variable efficiencies in Cl(-) uptake. Larvae acclimated to low-Cl(-) =0.001-0.007 mM) water developed higher densities of MR cells than those acclimated to high-Cl(-) =7.3-7.9 mM) water. The percentage of wavy-convex-type cells in total MR cells was higher in low-Cl(-)-acclimated larvae than in high-Cl(-)-acclimated larvae, which displayed only deep-hole type. In addition, Cl(-) influx rates of whole larva measured with (36)Cl(-) showed a coincident correlation with MR cell densities, that is, low-Cl(-) larvae displayed higher Cl(-) influx rates than did high-Cl(-) larva, suggesting that tilapia larvae develop a higher density of MR cells with larger apical surfaces (wavy-convex type) to boost Cl(-) uptake in Cl(-)-deficient water. The distinct types of apical surfaces may represent different phases of MR cells that possess different efficiencies of Cl(-) uptake. Increased apical membrane surface areas of MR cells may provide larvae with rapid regulation of Cl(-) before new MR cells differentiate.  相似文献   

18.
19.
Abnormal steroid hormone receptors have been implicated as causing several forms of primary steroid hormone resistance in humans, but as yet no abnormality has been described at the gene level. We describe the analysis of the mRNA and genomic DNA from the Epstein-Barr (EB) virus transformed cells of two siblings with Primary Cortisol Resistance. The cells of the propositus and his brother show a decreased level of glucocorticoid receptor (GR) mRNA, and the genomic DNA of both individuals shows an altered restriction enzyme pattern with the restriction enzyme Bgl II, one of eleven restriction enzymes tested. The genomic differences could be detected with a probe specific for the putative steroid binding domain of the human GR gene.  相似文献   

20.
Many mammals use acoustic signals to communicate with conspecifics. Rock hyraxes (Procavia capensis) are social mammals whose vocal communication is usually restricted to quiet sounds used between nearby individuals. Loud repetitive warning trills are an exception. In our study site, a third of the adult male hyraxes also produces a rich, complex and loud vocalization we term 'singing'. In this study, we examine whether singers, which are more conspicuous by the act of singing, have higher cortisol (i.e. basal stress; C) levels than non-singers, and whether there is an association between social status and stress hormones in male hyraxes. We show that 'singing' males are different from the general adult male population in that their C levels are higher than those of silent males. Only in singers, C levels are associated with social rank, with dominants showing the highest levels. Singers are also on average older and more dominant than most other sexually mature non-singing males. Further, they copulate more than non-singers, suggesting that singing males may have higher reproductive success. Our results support the ‘stress of domination’ hypothesis and indicate that in the rock hyrax singing may reflect high competitive ability, designating singers as a distinct class of males, unique in their personal attributes and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号