首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

2.
Helms SE  Hunter MD 《Oecologia》2005,145(2):196-203
In the attempt to use results from small-scale studies to make large-scale predictions, it is critical that we take into account the greater spatial heterogeneity encountered at larger spatial scales. An important component of this heterogeneity is variation in plant quality, which can have a profound influence on herbivore population dynamics. This influence is particularly relevant when we consider that the strength of density dependence can vary among host plants and that the strength of density dependence determines the difference between exponential and density- dependent growth. Here, we present some simple models and analyses designed to examine the impact of variable plant quality on the dynamics of insect herbivore populations, and specifically the consequences of variation in the strength of density dependence among host plants. We show that average values of herbivore population growth parameters, calculated from plants that vary in quality, do not predict overall population growth. Furthermore, we illustrate that the quality of a few individual plants within a larger plant population can dominate herbivore population growth. Our results demonstrate that ignoring spatial heterogeneity that exists in herbivore population growth on plants that differ in quality can lead to a misunderstanding of the mechanisms that underlie population dynamics.  相似文献   

3.
Community extinction patterns in coloured environments   总被引:1,自引:0,他引:1  
Understanding community responses to environmental variation is a fundamental aspect of ecological research, with direct ecological, conservation and economic implications. Here, we examined the role of the magnitude, correlation and autocorrelation structures of environmental variation on species' extinction risk (ER), and the probability of actual extinction events in model competitive communities. Both ER and probability increased with increasing positive autocorrelation when species responded independently to the environment, yet both decreased with a strong correlation between species-specific responses. These results are framed in terms of the synchrony between--and magnitude of variation within--species population sizes and are explained in terms of differences in noise amplification under different conditions. The simulation results are robust to changes in the strength of interspecific density dependence, and whether noise affects density-independent or density-dependent population processes. Similar patterns arose under different ranges of noise severity when these different model assumptions were examined. We compared our results with those from an analytically derived solution, which failed to capture many features of the simulation results.  相似文献   

4.
5.
1. To quantify the interactions between density-dependent, population regulation and density-independent limitation, we studied the time-series dynamics of an experimental laboratory insect microcosm system in which both environmental noise and resource limitation were manipulated. 2. A hierarchical Bayesian state-space approach is presented through which it is feasible to capture all sources of uncertainty, including observation error to accurately quantify the density dependence operating on the dynamics. 3. The regulatory processes underpinning the dynamics of two different bruchid beetles (Callosobruchus maculatus and Callosobruchus chinensis) are principally determined by environmental conditions, with fluctuations in abundance explained in terms of changes in overcompensatory dynamics and stochastic processes. 4. A general, stochastic population model is developed to explore the link between abundance fluctuations and the interaction between density dependence and noise. Taking account of time-lags in population regulation can substantially increase predicted population fluctuations resulting from underlying noise processes.  相似文献   

6.
The effect of red, white and blue environmental noise on discrete-time population dynamics is analyzed. The coloured noise is superimposed on Moran-Ricker and Maynard Smith dynamics, the resulting power spectra are less than examined. Time series dominated by short- and long-term fluctuations are said to be blue and red, respectively. In the stable range of the Moran-Ricker dynamics, environmental noise of any colour will make population dynamics red or blue depending the intrinsic growth rate. Thus, telling apart the colour of the noise from the colour of the population dynamics may not be possible. Population dynamics subjected to red and blue environmental noises show, respectively, more red or blue power spectra than those subjected to white noise. The sensitivity to differences in the noise colours decreases with increasing complexity and ultimately disappears in the chaotic range of the population dynamics. These findings are duplicated with the Maynard Smith model for high growth rates when the strength of density dependence changes. However, for low growth rates the power spectra of the population dynamics with noise are red in stable, periodic and aperiodic ranges irrespective of the noise colour. Since chaotic population fluctuations may show blue spectra in the deterministic case, this implies that blue deterministic chaos may become red under any colour of the noise.  相似文献   

7.
This is a mathematical study of the interactions between non-linear feedback (density dependence) and uncorrelated random noise in the dynamics of unstructured populations. The stochastic non-linear dynamics are generally complex, even when the deterministic skeleton possesses a stable equilibrium. There are three critical factors of the stochastic non-linear dynamics; whether the intrinsic population growth rate (lambda) is smaller than, equal to, or greater than 1; the pattern of density dependence at very low and very high densities; and whether the noise distribution has exponential moments or not. If lambda < 1, the population process is generally transient with escape towards extinction. When lambda > or = 1, our quantitative analysis of stochastic non-linear dynamics focuses on characterizing the time spent by the population at very low density (rarity), or at high abundance (commonness), or in extreme states (rarity or commonness). When lambda >1 and density dependence is strong at high density, the population process is recurrent: any range of density is reached (almost surely) in finite time. The law of time to escape from extremes has a heavy, polynomial tail that we compute precisely, which contrasts with the thin tail of the laws of rarity and commonness. Thus, even when lambda is close to one, the population will persistently experience wide fluctuations between states of rarity and commonness. When lambda = 1 and density dependence is weak at low density, rarity follows a universal power law with exponent -3/2. We provide some mathematical support for the numerical conjecture [Ferriere, R., Cazelles, B., 1999. Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80, 1505-1521.] that the -3/2 power law generally approximates the law of rarity of 'weakly invading' species with lambda values close to one. Some preliminary results for the dynamics of multispecific systems are presented.  相似文献   

8.
Extinction risk under coloured environmental noise   总被引:1,自引:0,他引:1  
Positively autocorrelated red environmental noise is characterized by a strong dependence of expected sample variance on sample length. This dependence has to be taken into account when assessing extinction risk under red and white uncorrelated environmental noise. To facilitate a comparison between red and white noise, their expected variances can be scaled to be equal, but only at a chosen time scale. We show with a simple one-dimensional population dynamics model that the different but equally reasonable choices of the time scale yield qualitatively different results on the dependence of extinction risk on the colour of environmental noise: extinction risk might increase as well as decrease when the temporal correlation of noise increases.  相似文献   

9.
Previous work suggests that red environmental noise can lead to the spurious appearance of delayed density dependence (DDD) in unstructured populations regulated only by direct density dependence. We analysed the effect of noise reddening on the pattern of spurious DDD in several variants of the density-dependent age-structured population model. We found patterns of spurious DDD in structured populations with either density-dependent fertility or density-dependent survival of the first age class, inconsistent with predictions from unstructured population models. Moreover, we found that nonspurious negative DDD always emerges in populations with deterministic chaotic dynamics, regardless of population structure or the type of environmental noise. The effect of noise reddening in generating spurious DDD is often negligible in the chaotic region of population deterministic dynamics. Our findings suggest that differences in species' life histories may exhibit different patterns of spurious DDD (owing to noise reddening) than predicted by unstructured models.  相似文献   

10.
In variable environments, it is probable that environmental conditions in the past can influence demographic performance now. Cohort effects occur when these delayed life-history effects are synchronized among groups of individuals in a population. Here we show how plasticity in density-dependent demographic traits throughout the life cycle can lead to cohort effects and that there can be substantial population dynamic consequences of these effects. We show experimentally that density and food conditions early in development can influence subsequent juvenile life-history traits. We also show that conditions early in development can interact with conditions at maturity to shape future adult performance. In fact, conditions such as food availability and density at maturity, like conditions early in development, can generate cohort effects in mature stages. Based on these data, and on current theory about the effects of plasticity generated by historical environments, we make predictions about the consequences of such changes on density-dependent demography and on mite population dynamics. We use a stochastic cohort effects model to generate a range of population dynamics. In accordance with the theory, we find the predicted changes in the strength of density dependence and associated changes in population dynamics and population variability.  相似文献   

11.
12.
Understanding population dynamics is critical for the management of animal populations. Comparatively little is known about the relative importance of endogenous (i.e. density‐dependent) and exogenous (i.e. density‐independent) factors on the population dynamics of amphibians with complex life cycles. We examined the potential effects of density‐dependent and ‐independent (i.e. climatic) factors on population dynamics by analyzing a 15‐yr time series data of the agile frog Rana dalmatina population from Târnava Mare Valley, Romania. We used two statistical models: 1) the partial rate correlation function to identify the feedback structure and the potential time lags in the time series data and 2) a Gompertz state‐space model to simultaneously investigate direct and delayed density dependence as well as climatic effects on population growth rate. We found evidence for direct negative density dependence, whereas delayed density dependence and climate did not show a strong influence on population growth rate. Here we demonstrated that direct density dependence rather than delayed density dependence or climate determined the dynamics of our study population. Our results confirm the findings of many experimental studies and suggest that density dependence may buffer amphibian populations against environmental stress. Consequently, it may not be easy to scale up from individual‐level effects to population‐level effects.  相似文献   

13.
Single species difference population models can show complex dynamics such as periodicity and chaos under certain circumstances, but usually only when rates of intrinsic population growth or other life history parameter are unrealistically high. Single species models with Allee effects (positive density dependence at low density) have also been shown to exhibit complex dynamics when combined with over-compensatory density dependence or a narrow fertility window. Here we present a simple two-stage model with Allee effects which shows large amplitude periodic fluctuations for some initial conditions, without these requirements. Periodicity arises out of a tension between the critical equilibrium of each stage, i.e. when the initial population vector is such that the adult stage is above the critical value, while the juvenile stage is below the critical value. Within this area of parameter space, the range of initial conditions giving rise to periodic dynamics is driven mainly by adult mortality rates. Periodic dynamics become more important as adult mortality increases up to a certain point, after which periodic dynamics are replaced by extinction. This model has more realistic life history parameter values than most 'chaotic' models. Conditions for periodic dynamics might arise in some marine species which are exploited (high adult mortality) leading to recruitment limitation (low juvenile density) and might be an additional source of extinction risk.  相似文献   

14.
 In this paper we propose a general framework for discrete time one-dimensional Markov population models which is based on two fundamental premises in population dynamics. We show that this framework incorporates both earlier population models, like the Ricker and Hassell models, and experimental observations concerning the structure of density dependence. The two fundamental premises of population dynamics are sufficient to guarantee that the model will exhibit chaotic behaviour for high values of the natural growth and the density-dependent feedback, and this observation is independent of the particular structure of the model. We also study these models when the environment of the population varies stochastically and address the question under what conditions we can find an invariant probability distribution for the population under consideration. The sufficient conditions for this stochastic stability that we derive are of some interest, since studying certain statistical characteristics of these stochastic population processes may only be possible if the process converges to such an invariant distribution. Received 15 May 1995; received in revised form 17 April 1996  相似文献   

15.
Independent species fluctuations are commonly used as a null hypothesis to test the role of competition and niche differences between species in community stability. This hypothesis, however, is unrealistic because it ignores the forces that contribute to synchronization of population dynamics. Here we present a mechanistic neutral model that describes the dynamics of a community of equivalent species under the joint influence of density dependence, environmental forcing, and demographic stochasticity. We also introduce a new standardized measure of species synchrony in multispecies communities. We show that the per capita population growth rates of equivalent species are strongly synchronized, especially when endogenous population dynamics are cyclic or chaotic, while their long-term fluctuations in population sizes are desynchronized by ecological drift. We then generalize our model to nonneutral dynamics by incorporating temporal and nontemporal forms of niche differentiation. Niche differentiation consistently decreases the synchrony of species per capita population growth rates, while its effects on the synchrony of population sizes are more complex. Comparing the observed synchrony of species per capita population growth rates with that predicted by the neutral model potentially provides a simple test of deterministic asynchrony in a community.  相似文献   

16.
A major challenge in ecology is to explain why so many species show oscillatory population dynamics and why the oscillations commonly occur with particular periods. The background environment, through noise or seasonality, is one possible driver of these oscillations, as are the components of the trophic web with which the species interacts. However, the oscillation may also be intrinsic, generated by density-dependent effects on the life history. Models of structured single-species systems indicate that a much broader range of oscillatory behavior than that seen in nature is theoretically possible. We test the hypothesis that it is selection that acts to constrain the range of periods. We analyze a nonlinear single-species matrix model with density dependence affecting reproduction and with trade-offs between reproduction and survival. We show that the evolutionarily stable state is oscillatory and has a period roughly twice the time to maturation, in line with observed patterns of periodicity. The robustness of this result to variations in trade-off function and density dependence is tested.  相似文献   

17.
We analyze the effects of a strategy of constant effort harvesting in the global dynamics of a one-dimensional discrete population model that includes density-independent survivorship of adults and overcompensating density dependence. We discuss the phenomenon of bubbling (which indicates that harvesting can magnify fluctuations in population abundance) and the hydra effect, which means that the stock size gets larger as harvesting rate increases. Moreover, we show that the system displays chaotic behaviour under the combination of high per capita recruitment and small survivorship rates.  相似文献   

18.
Spatial synchrony is common, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noise, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we developed a spatially structured population model, which is described by coupled-map lattices. Our recent investigation showed that trophic correlation of environmental noise was another important factor that affects spatial synchrony. As a supplement, we considered the influence of the color of the environmental noise on the spatial synchrony in this study. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony were considered for stable, periodic (quasi-periodic), and chaotic population dynamics. Numerical simulations verified that the color of the environmental noise is another mechanism that causes spatial synchrony. Generally, the effect of the color of the noise on the synchrony is dependent on the type of dynamics (stable, cyclic, chaotic) present in the population. For cyclic dynamics, simulation results clearly demonstrate that reddened noise has higher synchrony than white noise. The importance of our research is that it enriches the theory of potential causes of spatial synchrony.  相似文献   

19.
Controlling weed populations requires an understanding of their underlying population dynamics which can be achieved through a combination of model development and long-term studies. In this paper, we develop models based on long-term data from experimental populations of the weedy annual plant Cardamine pensylvanica. Four replicate populations of C. pensylvanica were grown in growth chambers under three different nutrient levels but with all other environmental conditions held constant. We analyze the resulting time series using generalized additive models and perform stability analyses using Lyapunov exponents. Further, we test whether the proposed mechanism, delayed density dependence caused by maternal effects, is operating in our system by experimentally manipulating maternal density and assessing the resulting offspring quality. Our results show that that increasing the frequency of nutrients causes plant population dynamics to shift from stable to damped 2-point oscillations to longer cycles. This shift in population dynamics is due to a shift at high nutrients from populations being regulated by first order density feedbacks to being regulated by both first order and second order density feedbacks. A consequence of these first order and second order feedbacks was an increase in cycle lengths as demonstrated by the presence of complex eigenvalues. A short-term experiment confirmed that when grown under high nutrients, the density of maternal plants strongly affected offspring size, providing a mechanism whereby these second order density feedbacks could operate. Our results demonstrate that increasing nutrient frequency results in a qualitative shift in dynamics from stable to longer cycles.  相似文献   

20.
Peary caribou Rangifer tarandus pearyi is the northernmost subspecies of Rangifer in North America and endemic to the Canadian High Arctic. Because of severe population declines following years of unfavorable winter weather with ice coating on the ground or thicker snow cover, it is believed that density-independent disturbance events are the primary driver for Peary caribou population dynamics. However, it is unclear to what extent density dependence may affect population dynamics of this species. Here, we test for different levels of density dependence in a stochastic, single-stage population model, based on available empirical information for the Bathurst Island complex (BIC) population in the Canadian High Arctic. We compare predicted densities with observed densities during 1961–2001 under various assumptions of the strength of density dependence. On the basis of our model, we found that scenarios with no or very low density dependence led to population densities far above observed densities. For average observed disturbance regimes, a carrying capacity of 0.1 caribou km−2 generated an average caribou density similar to that estimated for the BIC population over the past four decades. With our model we also tested the potential effects of climate change-related increases in the probability and severity of disturbance years, that is unusually poor winter conditions. On the basis of our simulation results, we found that, in particular, potential increases in disturbance severity (as opposed to disturbance frequency) may pose a considerable threat to the persistence of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号