首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg(-1)·min(-1)), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI.  相似文献   

2.
Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.  相似文献   

3.
4.
The aim of this study was to assess whether endogenous Ang II and oxidative stress produced by acute hypertonic sodium overload may regulate the expression of aquaporin-1 (AQP-1) and aquaporin-2 (AQP-2) in the kidney. Groups of anesthetized male Sprague–Dawley rats were infused with isotonic saline solution (control) or with hypertonic saline solution (Na group, 1 M NaCl), either alone or with losartan (10 mg kg?1) or tempol (0.5 mg min?1 kg?1) during 2 h. Renal function parameters were measured. Groups of unanesthetized animals were injected intraperitoneally with hypertonic saline solution, with or without free access to water intake, Na+W, and Na?W, respectively. The expression of AQP-1, AQP-2, Ang II, eNOS, and NF-kB were evaluated in the kidney by Western blot and immunohistochemistry. AQP-2 distribution was assessed by immunofluorescence. Na group showed increased natriuresis and diuresis, and Ang II and NF-kB expression, but decreased eNOS expression. Losartan or tempol enhanced further the diuresis, and AQP-2 and eNOS expression, as well as decreased Ang II and NF-kB expression. Confocal immunofluorescence imaging revealed labeling of AQP-2 in the apical plasma membrane with less labeling in the intracellular vesicles than the apical membrane in kidney medullary collecting duct principal cells both in C and Na groups. Importantly, our data also show that losartan and tempol induces a predominantly accumulation of AQP-2 in intracellular vesicles. In unanesthetized rats, Na+W group presented increased diuresis, natriuresis, and AQP-2 expression (112?±?25 vs 64?±?16; *p?<?0.05). Water deprivation increased plasma sodium and diuresis but decreased AQP-2 (46?±?22 vs 112?±?25; §p?<?0.05) and eNOS expression in the kidney. This study is a novel demonstration that renal endogenous Ang II–oxidative stress, induced in vivo in hypernatremic rats by an acute sodium overload, regulates AQP-2 expression.  相似文献   

5.
We investigated the effects of diastolic wall stress (WS) and angiotensin II (ANG II) on the left ventricular (LV) hypertrophy (LVH) induced by volume overload and on the gene expression of LV adrenomedullin (AM) and atrial natriuretic peptide (ANP) in volume overload. Diastolic WS was pharmacologically manipulated with (candesartan) or without (calcium channel blocker manidipine) inhibition of ANG II type 1 receptors in aortocaval-shunted rats over 6 wk. Diastolic WS reached a plateau at 2 wk and subsequently declined regardless of further LVH. Although diastolic WS was decreased to a similar extent by both compounds, candesartan blunted LVH over 6 wk, whereas manidipine blunted LVH at 2 wk but not after 4 wk. Levels of AM and ANP gene expression increased as LVH developed but were completely suppressed by candesartan over 6 wk. ANP expression level was also attenuated by manidipine over 6 wk, whereas AM expression level was suppressed at 2 wk but not after 4 wk by manidipine. We concluded that diastolic WS and ANG II might be potent stimuli for the LVH and LV AM and ANP gene expression in volume overload and that diastolic WS could be relatively involved in the early LVH and in the gene expression of ANP rather than of AM.  相似文献   

6.
Osteopontin (OPN) has been implicated in the pathology of several renal conditions. Recently, we demonstrated in vitro that aldosterone has important roles in collagen synthesis by inducing OPN (Irita J, Okura T, Kurata M, Miyoshi K, Fukuoka T, Higaki J. Hypertension 51: 507-513, 2008). The aim of the present study was to clarify the roles of OPN in aldosterone-mediated renal fibrosis by infusing aldosterone into either wild-type (WT) or OPN knockout mice (OPN(-/-)). We used uninephrectomized mice treated with aldosterone and high salt to exacerbate renal fibrosis. After 4 wk of treatment with aldosterone, we showed similar increases in systolic blood pressure in both strains of mice. Urine albumin excretion was greater in aldosterone-infused WT mice than in aldosterone-infused OPN(-/-) mice. Immunohistochemical analysis showed high levels of OPN expression in aldosterone-infused WT mice. Interstitial fibrosis and inflammatory infiltrations were increased in aldosterone-infused WT mice compared with either vehicle-infused WT or aldosterone-infused OPN(-/-) mice. These changes were ameliorated markedly by eplerenone treatment in aldosterone-infused WT mice. Aldosterone-infused WT mice also had increased expression of NADPH oxidase subunits compared with aldosterone-infused OPN(-/-) mice. We observed a marked increase in oxidative stress markers in aldosterone-infused WT mice compared with aldosterone-infused OPN(-/-) mice. These results indicate that OPN is a promoter of aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney and suggest that inhibition of OPN may be a potential therapeutic target for prevention of renal injury.  相似文献   

7.
We evaluated oxidative stress associated with a model of experimental epilepsy. Male Wistar rats were injected i.p. with 150 mg/kg convulsant 3-mercaptopropionic acid and decapitated in two stages: during seizures or in the post-seizure period. Spontaneous chemiluminescence, levels of thiobarbituric acid reactive substances, total antioxidant capacity and antioxidant enzyme activities were measured in cerebellum, hippocampus, cerebral cortex and striatum. In animals killed at seizure, increases of 42% and 90% were observed in spontaneous chemiluminescence of cerebellum and cerebral cortex homogenates, respectively, accompanied by a 25% increase in cerebral cortex levels of thiobarbituric acid reactive substances. In the post-seizure stage, emission completely returned to control levels in cerebral cortex and partly in cerebellum, thus showing oxidative stress reversibility in time. Hippocampus and striatum seemed less vulnerable areas to oxidative damage. A 30% decrease in glutathione peroxidase activity was only observed in cerebral cortex during seizures, while catalase and superoxide dismutase remained unchanged in all four areas during either stage. Likewise, total antioxidant capacity was unaffected in any of the studied areas. It is suggested that oxidative stress in this model of epilepsy arises from an increase in oxidant species rather than from depletion of antioxidant defences.  相似文献   

8.
Summary Quantitative aspects of tight junction morphology were systematically studied in the cortical and outer medullary segments of the distal urinary tubules of rat, hamster, rabbit, cat, dog and the primitve primate Tupaia belangeri.Only minor differences in junctional architecture were found between straight and convoluted portions of the distal tubule. In contrast, the collecting duct in cortex and outer medulla, in all species, exhibits the most elaborate tight junctions observed along the uriniferous tubule.The present and previous findings from this laboratory indicate that increasing tightness of the junctional complexes is apparent along the course of the nephron in all species studied.The proposed relationship between quantitative aspects of the zonula occludens and presently available values for transepithelial electrical resistance was re-examined for the renal tubules. It was found that for the mammalian kidney a satisfactory correlation exists between the tight junction morphology and presently known functional parameters. This relationship is the more evident the more additional dimensional characteristics of the intercellular clefts are taken into consideration.It may therefore be concluded that, at least for the mammalian kidney, the assumption of differences in the molecular organization of the tight junctions is not needed to explain so far unresolved discrepancies between tubular morphology and function.Parts of these findings were presented at the 72nd Meeting of the Anatomical Society, Aachen; April 1977 (see Verh. Anat. Ges. 72:229–234 [1978])Supported by the Deutsche Forschungsgemeinschaft  相似文献   

9.
Acidic nuclear phosphoprotein 32 family member e (Anp32e) has been reported to contribute to early mammalian development and cancer metastasis. However, the pathophysiological role of Anp32e in renal interstitial fibrosis (RIF) is poorly understood. Here, we demonstrated that Anp32e was highly expressed in the region of RIF in patients with IgA nephropathy, unilateral ureteral obstruction (UUO) mouse kidneys, and Boston University mouse proximal tubular (BUMPT) cells when treated with TGF-β1; this upregulation was positively correlated with the total fibrotic area of the kidneys. The overexpression of Anp32e enhanced the TGF-β1-induced production of fibrosis-related proteins (fibronectin (Fn) and collagen type I (Col-I)) in BUMPT cells whereas the knockdown of Anp32e suppressed the deposition of these fibrosis-related proteins in UUO mice and TGF-β1-stimulated BUMPT cells. In particular, Anp32e overexpression alone induced the deposition of Fn and Col-I in both mouse kidneys and BUMPT cells without TGF-β1 stimulation. Furthermore, we revealed that the overexpression of Anp32e induced the expression of TGF-β1 and p-Smad3 while TGF-β1 inhibitor SB431542 reversed the Anp32e-induced upregulation of Fn and Col-I in BUMPT cells without TGF-β1 stimulation. Collectively, our data demonstrate that Anp32e promotes the deposition of fibrosis-related proteins by regulating the TGF-β1/Smad3 pathway.  相似文献   

10.
NAD(P)H oxidase has been shown to be important in?the development of salt-sensitive hypertension. Here, we show that the expression of a subunit of NAD(P)H oxidase, p67(phox), was increased in response to a high-salt diet in the outer renal medulla of the Dahl salt-sensitive (SS) rat, an animal model for human salt-sensitive hypertension. The higher expression of p67(phox), not the other subunits observed, was associated with higher NAD(P)H oxidase activity and salt sensitivity in SS rats compared with a salt-resistant strain. Genetic mutations of the SS allele of p67(phox) were found in the promoter region and contributed to higher promoter activity than that of the salt-resistant strain. To verify the importance of p67(phox), we disrupted p67(phox) in SS rats using zinc-finger nucleases. These rats exhibited a significant reduction of salt-sensitive hypertension and renal medullary oxidative stress and injury. p67(phox) could represent a target for salt-sensitive hypertension therapy.  相似文献   

11.
12.
李秀丽  高原 《生理学报》1992,44(1):8-14
In anesthetized rats, it was observed that intracerebroventricular (I.C.V.) microinjection of angiotensin II (ANG II) in a dose of 16 pg evoked a significant increase in renal sodium excretion which began within 15 min and lasted for 90 min. The activity of Na+.K(+)-ATPase in renal cortex after I.C.V. microinjection of ANG II (1.51 +/- 0.26 mumol Pi/mg Pro.h) was inhibited as compared with that of the control injecting of artificial cerebrospinal fluid (2.66 +/- 0.28 mumol Pi/mg Pro.h, P less than 0.01). There was no change in mean arterial pressure. Within 15 min after I.C.V. administration of ANG II antibody, however, and antinatriuretic period of 135 min and a higher activity of Na+.K(+)-ATPase in renal cortex (3.61 +/- 0.34 mumol Pi/mg Pro.h, P less than 0.05 compared with control) were observed. There was no natriuresis in the animals microinjected with ANG II either into femoral vein or into spinal subarachnoid space. The result of the present investigation suggests that brain endogenous ANG II may possess some natriuretic activity possibly through inhibiting renal Na+.K(+)-ATPase activity.  相似文献   

13.
14.
Although long noncoding RNA (LncRNA) are important players in the initiation and progression of many pathological processes, the role of LncRNAENST00000453774.1 (LncRNA 74.1) in renal fibrosis still remains unclear. Lentivirus mediated LncRNA 74.1 overexpressing HK2 cells and overexpression mice models were constructed. HK2 cells induced by transforming growth factor-β (TGF-β) in vitro, and the mice UUO model in vivo were used to simulate renal fibrosis. The expression of LncRNA 74.1 was significantly downregulated in the TGF-β-induced HK-2 cell fibrosis and clinical renal fibrosis specimens. LncRNA 74.1 overexpression obviously attenuated renal fibrosis in vitro and unilateral ureteral obstruction-induced renal fibrosis in vivo. LncRNA 74.1 promoted reactive oxygen species defense by activating prosurvival autophagy then decreased ECM-related proteins fibronectin and collagen I involved in renal fibrosis. We also found that Nrf2-keap1 signaling played important roles in the remission of ECM mediated by LncRNA 74.1. This study indicates that LncRNA 74.1 downregulation would contribute to renal fibrosis and its overexpression might represent a novel anti-fibrotic treatment in renal diseases.  相似文献   

15.
16.
Progressive decline in renal function coexists with myocardial infarction (MI); however, little is known about its pathophysiology. This study aimed to systematically identify post-MI renal changes (functional, histological, and molecular) over time in a rat MI model and examine potential mechanisms that may underlie these changes. Rats were randomized into three groups: nonoperated, sham, and MI. Cardiac and renal function was assessed before death at 1, 4, 8, 12, and 16 wk with tissues collected for histological, protein, and gene studies. Tail-cuff blood pressure was lower in MI than sham and nonoperated animals only at 1 wk (P < 0.05). Systolic function was reduced (P < 0.0001) while heart/body weight and left ventricle/body weight were significantly greater in MI animals at all time points. Glomerular filtration rate decreased following MI at 1 and 4 wk (P < 0.05) but not at 8 and 12 wk and then deteriorated further at 16 wk (P = 0.052). Increased IL-6 gene and transforming growth factor (TGF)-β protein expression as well as macrophage infiltration in kidney cortex was detected at 1 wk (P < 0.05). Renal cortical interstitial fibrosis was significantly greater in MI animals from 4 wk, while TGF-β bioactivity (phospho-Smad2) was upregulated at all time points. The degree of fibrosis increased and was maximal at 16 wk. In addition, kidney injury molecule-1-positive staining in the tubules was more prominent in MI animals, maximal at 1 wk. In conclusion, renal impairment occurs early post-MI and is associated with hemodynamic and structural changes in the kidney possibly via activation of the Smad2 signaling pathway.  相似文献   

17.
Oxidative stress is an important factor in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants characterized by arrested alveolar and vascular development of the immature lung. We investigated differential gene expression with DNA microarray analysis in premature rat lungs exposed to prolonged hyperoxia during the saccular stage of development, which closely resembles the development of the lungs of premature infants receiving neonatal intensive care. Expression profiles were largely confirmed by real-time RT-PCR (27 genes) and in line with histopathology and fibrin deposition studied by Western blotting. Oxidative stress affected a complex orchestra of genes involved in inflammation, coagulation, fibrinolysis, extracellular matrix turnover, cell cycle, signal transduction, and alveolar enlargement and explains, at least in part, the pathological alterations that occur in lungs developing BPD. Exciting findings were the magnitude of fibrin deposition; the upregulation of chemokine-induced neutrophilic chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), amphiregulin, plasminogen activator inhibitor-1 (PAI-1), secretory leukocyte proteinase inhibitor (SLPI), matrix metalloproteinase-12 (MMP12), p21, metallothionein, and heme oxygenase (HO); and the downregulation of fibroblast growth factor receptor-4 (FGFR4) and vascular endothelial growth factor (VEGF) receptor-2 (Flk-1). These findings are not only of fundamental importance in the understanding of the pathophysiology of BPD, but also essential for the development of new therapeutic strategies.  相似文献   

18.
Glycerophosphorylcholine (GPC), sorbitol and inositol were quantitated in renal tubule suspensions from inner and outer medulla of untreated Sprague-Dawley rats to study the regulation of organic osmolyte concentrations under different metabolic conditions and varying extracellular osmolalities in vitro. Inner medullary tubules prepared in hypertonic saline (550 mosm/kg) contained osmolyte concentrations comparable to those found in the kidney in vivo. Incubation for up to 8 h at 5 mmol/l glucose increased sorbitol in the inner medullary tubules and medium in an osmolality-dependent fashion, whereas GPC and inositol remained constant. At a given glucose concentration the rate of sorbitol formation decreased linearly with increasing tubular sorbitol concentration, which was regulated by an osmolality-dependent export mechanism. Perturbation of tubular mechanisms by inhibition of glycolysis or oxidative phosphorylation did not change the tubular osmolyte content. In contrast to papilla outer medullary tubules contained only inositol. Lactate added as a metabolic substrate to the outer medullary tubules did not change the cellular inositol levels. In outer medullary tubules osmolality changes (320-710 mosm/kg) had no effect on tubular inositol. Addition of furosemide was without effect, when added in vitro. The results indicate that tubular sorbitol formation is regulated by glucose concentration, the level of tubular sorbitol, and an osmolality-dependent export mechanism. In contrast, cellular inositol and GPC levels seem to be independent of acute changes in tubular metabolism.  相似文献   

19.
We examined the function of presenilin-1 (PS1) on neuronal resistance to oxidative stress. CNS neurons cultured from PS1-deficient mice exhibited increased vulnerability to H2O2 treatment compared with those from wild-type mice. Antioxidants protected the cultured neurons against the oxidative stress. An intracellular calcium chelator, BAPTA AM, as well as an L-type voltage-dependent calcium channel blocker, nifedipine, rescued the neurons from H2O2-induced death, while an N-type voltage-dependent calcium channel blocker, omega-conotoxin, or calcium release blockers from ER stores, dantrolene and xestospongin C, failed to rescue them. Wild-type and PS1-deficient neurons showed comparable increases of cytoplasmic free calcium levels after exposure to H2O2. Taken together with the data that PS1-deficient neurons exhibited increased vulnerability to glutamate, these findings imply that PS1 confers resistance to oxidative stress on neurons in calcium-dependent manners.  相似文献   

20.
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号