首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alternate sigma factor sigmaS plays an important role in the survival of Salmonella typhimurium following sudden encounters with a variety of stress conditions. The level of sigmaS is very low in rapidly growing cells but dramatically increases as those cells encounter environmental stress or enter into stationary phase. This increase is due in large measure to the stabilization of sigmaS protein against degradation by the ClpXP protease. The MviA protein, also known as RssB or SprE in Escherichia coli, is a putative member of a two component signal transduction system that plays a central role in facilitating sigmaS degradation by ClpXP. In contrast to most two-component systems, MviA does not appear to regulate gene expression but is believed to interact directly with sigmaS and somehow facilitate degradation. We now provide evidence that MviA(RssB) directly interacts both with sigmaS and ClpX in vivo, presumably enabling presentation of sigmaS to the ClpP protease. Interactions were demonstrated using a bacterial two-hybrid system in which sigmaS, MviA, and ClpX were fused to separate moieties of Bordetella pertussis CyaA (adenylate cyclase). Paired hybrid plasmids containing Cya'-MviA/RpoS-'Cya or Cya'-MviA/ClpX-'Cya successfully reconstituted adenylate cyclase activity in both S. typhimurium and E. coli. However, no direct interactions were detected between ClpX and RpoS. A second series of experiments has indicated that the interaction between MviA and sigmaS requires the N-terminus but not the C-terminus of MviA. Cellular levels of MviA appear to be very low in the cell based on lacZ fusion, Western blot and Northern blot analyses suggesting a catalytic role for MviA in sigmaS degradation. Mutagenesis of MviA residue D58, a canonical residue subject to phosphorylation in many two-component systems, decreased the ability of MviA to facilitate sigmaS turnover in vivo confirming that phosphorylation of MviA increases MviA activity.  相似文献   

2.
3.
4.
5.
6.
The heat shock response of Escherichia coli is under the positive control of the sigma 32 protein (the product of the rpoH gene). We found that overproduction of the sigma 32 protein led to concomitant overproduction of the heat shock proteins, suggesting that the intracellular sigma 32 levels limit heat shock gene expression. In support of this idea, the intracellular half-life of the sigma 32 protein synthesized from a multicopy plasmid was found to be extremely short, e.g., less than 1 min at 37 and 42 degrees C. The half-life increased progressively with a decrease in temperature, reaching 15 min at 22 degrees C. Finally, conditions known previously to increase the rate of synthesis of the heat shock proteins, i.e., a mutation in the dnaK gene or expression of phage lambda early proteins, were shown to simultaneously result in a three- to fivefold increase in the half-life of sigma 32.  相似文献   

7.
Plasmids containing an antisense fragment of the sigma(32) gene were constructed and introduced into Escherichia coli cells. Downregulation of the sigma(32)-mediated stress response was evaluated under heat shock and ethanol stress and during the production of organophosphorus hydrolase (OPH). Northern blot analyses revealed that sigma(32) sense mRNA was virtually undetected in antisense-producing cultures from 5 to 20 min after antisense induction. However, lower-molecular-weight bands were found, presumably due to partial degradation of sigma(32) mRNA. While a >10-fold increase in sigma(32) protein level was found under ethanol stress in the control cultures, antisense producing cultures resulted in a <3-fold increase, indicating downregulation of sigma(32). Correspondingly, antisense synthesis resulted in a decreased level of a sigma(32) regulated chaperone (GroEL) for the first 2 h after induction relative to control cultures without sigma(32) antisense mRNA. The total yield of OPH in the presence of sigma(32) antisense was, on average, 62% of the yield without antisense. However, during sigma(32) antisense production, a sixfold-higher specific OPH activity was observed compared to non-antisense-producing cultures.  相似文献   

8.
9.
The stationary-phase-inducible sigma factor, sigma(S) (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella: We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the sigma(S) protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of sigma(S), showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

10.
11.
12.
13.
14.
Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor sigma(S) and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. The lon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor sigma(32) (sigma(H)) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, sigma(H) represents the third sigma factor (with sigma(S) and sigma(70)) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator sigma(S) or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.  相似文献   

15.
16.
The cIII protein of bacteriophage lambda is known to protect two regulatory proteins from degradation by the essential Escherichia coli protease HflB (also known as FtsH), viz., the lambda cII protein and the host heat shock sigma factor sigma32. lambda cIII, itself an unstable protein, is partially stabilized when the HflB concentration is decreased, and its half-life is decreased when HflB is overproduced, strongly suggesting that it is degraded by HflB in vivo. The in vivo degradation of lambda cIII (unlike that of sigma32) does not require the molecular chaperone DnaK. Furthermore, the half-life of lambda cIII is not affected by depletion of the endogenous ATP pool, suggesting that lambda cIII degradation is ATP independent (unlike that of lambda cII and sigma32). The lambda cIII protein, which is predicted to contain a 22-amino-acid amphipathic helix, is associated with the membrane, and nonlethal overproduction of lambda cIII makes cells hypersensitive to the detergent sodium dodecyl sulfate. This could reflect a direct lambda cIII-membrane interaction or an indirect association via the membrane-bound HflB protein, which is known to be involved in the assembly of certain periplasmic and outer membrane proteins.  相似文献   

17.
SprE regulates sigma(S) levels in response to nutrient availability by promoting ClpXP-mediated degradation. Paradoxically, we observe that SprE is similarly regulated, accumulating preferentially upon starvation. This regulation of SprE levels is sigma(S) dependent, altering SprE synthesis at the level of translation. Thus, we demonstrate that SprE and sigma(S) function within a regulatory feedback loop.  相似文献   

18.
19.
20.
A key step in the regulation of heat shock genes in Escherichia coli is the stress-dependent degradation of the heat shock promoter-specific sigma(32) subunit of RNA polymerase by the AAA protease, FtsH. Previous studies implicated the C termini of protein substrates, including sigma(32), as degradation signals for AAA proteases. We investigated the role of the C terminus of sigma(32) in FtsH-dependent degradation by analysis of C-terminally truncated sigma(32) mutant proteins. Deletion of the 5, 11, 15, and 21 C-terminal residues of sigma(32) did not affect degradation in vivo or in vitro. Furthermore, a peptide comprising the C-terminal 21 residues of sigma(32) was not degraded by FtsH in vitro and thus did not serve as a recognition sequence for the protease, while an unrelated peptide of similar length was efficiently degraded. The truncated sigma(32) mutant proteins remained capable of associating with DnaK and DnaJ in vitro but showed intermediate (5-amino-acid deletion) and strong (11-, 15-, and 21-amino-acid deletions) defects in association with RNA polymerase in vitro and biological activity in vivo. These results indicate an important role for the C terminus of sigma(32) in RNA polymerase binding but no essential role for FtsH-dependent degradation and association of chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号