首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation scanning and direct DNA sequencing of all 50 exons of ABCR were completed for 150 families segregating recessive Stargardt disease (STGD1). ABCR variations were identified in 173 (57%) disease chromosomes, the majority of which represent missense amino acid substitutions. These ABCR variants were not found in 220 unaffected control individuals (440 chromosomes) but do cosegregate with the disease in these families with STGD1, and many occur in conserved functional domains. Missense amino acid substitutions located in the amino terminal one-third of the protein appear to be associated with earlier onset of the disease and may represent misfolding alleles. The two most common mutant alleles, G1961E and A1038V, each identified in 16 of 173 disease chromosomes, composed 18.5% of mutations identified. G1961E has been associated previously, at a statistically significant level in the heterozygous state, with age-related macular degeneration (AMD). Clinical evaluation of these 150 families with STGD1 revealed a high frequency of AMD in first- and second-degree relatives. These findings support the hypothesis that compound heterozygous ABCR mutations are responsible for STGD1 and that some heterozygous ABCR mutations may enhance susceptibility to AMD.  相似文献   

2.
Stargardt disease is a recessively transmitted disease caused by mutations in the ABCR gene. Linkage disequilibrium has recently been reported between a polymorphism, 2828 A, and a common Western European founder mutation, 2588 C. Here, we confirm this linkage disequilibrium in a North American population. We also describe two complex alleles involving the 2828 A and 2588 C alterations and suggest a possible order of clinical severity of mutations identified in trans to the complex alleles. Finally, we report pseudodominance of Stargardt disease in a family with the 2588 C mutation, further supporting a high frequency of carriers for ABCR mutations in our population.  相似文献   

3.
Stargardt disease (STGD) is a juvenile-onset macular dystrophy and can be inherited in an autosomal recessive or in an autosomal dominant manner. Genes involved in dominant STDG have been mapped to human chromosomes 13q (STGD2) and 6q (STGD3). Here, we identify a new kindred with dominant STGD and demonstrate genetic linkage to the STGD3 locus. Because of a more severe macular degeneration phenotype of one of the patients in this family, the gene responsible for the recessive STGD1, ABCR, was analyzed for sequence variants in all family members. One allele of the ABCR gene was shown to carry a stop codon-generating mutation (R152X) in three family members, including the one patient who had inherited also the dominant gene. A grandparent of that patient with the same ABCR mutation developed age-related macular degeneration (AMD), consistent with our earlier observation that some variants in the ABCR gene may increase susceptibility to AMD in the heterozygous state. Based on these results, we propose that there is a common genetic pathway in macular degeneration that includes genes for both recessive and dominant STGD.  相似文献   

4.
In 40 western European patients with Stargardt disease (STGD), we found 19 novel mutations in the retina-specific ATP-binding cassette transporter (ABCR) gene, illustrating STGD's high allelic heterogeneity. One mutation, 2588G-->C, identified in 15 (37.5%) patients, shows linkage disequilibrium with a rare polymorphism (2828G-->A) in exon 19, suggesting a founder effect. The guanine at position 2588 is part of the 3' splice site of exon 17. Analysis of the lymphoblastoid cell mRNA of two STGD patients with the 2588G-->C mutation shows that the resulting mutant ABCR proteins either lack Gly863 or contain the missense mutation Gly863Ala. We hypothesize that the 2588G-->C alteration is a mild mutation that causes STGD only in combination with a severe ABCR mutation. This is supported in that the accompanying ABCR mutations in at least five of eight STGD patients are null (severe) and that a combination of two mild mutations has not been observed among 68 STGD patients. The 2588G-->C mutation is present in 1 of every 35 western Europeans, a rate higher than that of the most frequent severe autosomal recessive mutation, the cystic fibrosis conductance regulator gene mutation DeltaPhe508. Given an STGD incidence of 1/10,000, homozygosity for the 2588G-->C mutation or compound heterozygosity for this and other mild ABCR mutations probably does not result in an STGD phenotype.  相似文献   

5.
Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).  相似文献   

6.
Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors, including variants in the CFH gene and the ARMS2 LOC387715/HTRA1locus. Our purpose was to perform a case-control study in two populations among individuals who did not carry risk variants for CFHY402H and LOC387715 A69S (ARMS2), called “study” individuals, in order to identify new genetic risk factors. Based on a candidate gene approach, we analyzed SNP rs5888 of the SCARB1 gene, coding for SRBI, which is involved in the lipid and lutein pathways. This study was conducted in a French series of 1241 AMD patients and 297 controls, and in a North American series of 1257 patients with advanced AMD and 1732 controls. Among these individuals, we identified 61 French patients, 77 French controls, 85 North American patients and 338 North American controls who did not carry the CFH nor ARMS2 polymorphisms. An association between AMD and the SCARB1 gene was seen among the study subjects. The genotypic distribution of the rs5888 polymorphism was significantly different between cases and controls in the French population (p<0.006). Heterozygosity at the rs5888 SNP increased risk of AMD compared to the CC genotypes in the French study population (odds ratio (OR) = 3.5, CI95%: 1.4–8.9, p<0.01) and after pooling the 2 populations (OR = 2.9, 95% CI: 1.6–5.3, p<0.002). Subgroup analysis in exudative forms of AMD revealed a pooled OR of 3.6 for individuals heterozygous for rs5888 (95% CI: 1.7–7.6, p<0.0015). These results suggest the possible contribution of SCARB1, a new genetic factor in AMD, and implicate a role for cholesterol and antioxidant micronutrient (lutein and vitamin E) metabolism in AMD.  相似文献   

7.
Mutations in the retina-specific ABC transporter (ABCR) gene are responsible for autosomal recessive Stargardt disease (arSTGD). Mutation detection efficiency in ABCR in arSTGD patients ranges between 30% and 66% in previously published studies, because of high allelic heterogeneity and technical limitations of the employed methods. Conditions were developed to screen the ABCR gene by double-gradient denaturing-gradient gel electrophoresis. The efficacy of this method was evaluated by analysis of DNA samples with previously characterized ABCR mutations. This approach was applied to mutation detection in 44 Italian arSTGD patients corresponding to 36 independent genomes, in order to assess the nature and frequency of the ABCR mutations in this ethnic group. In 34 of 36 (94.4%) STGD patients, 37 sequence changes were identified, including 26 missense, six frameshift, three splicing, and two nonsense variations. Among these, 20 had not been previously described. Several polymorphisms were detected in affected individuals and in matched controls. Our findings extend the spectrum of mutations identified in STGD patients and suggest the existence of a subset of molecular defects specific to the Italian population. The identification of at least two disease-associated mutations in four healthy control individuals indicates a higher than expected carrier frequency of variant ABCR alleles in the general population. Genotype-phenotype analysis in our series showed a possible correlation between the nature and location of some mutations and specific ophthalmoscopic features of STGD disease.  相似文献   

8.
ABCR is a photoreceptor-specific ATP-binding cassette transporter that has been linked to various retinal diseases, including Stargardt macular dystrophy, and implicated in retinal transport across rod outer segment (ROS) membranes. We have examined the ATPase and GTPase activity of detergent-solubilized and reconstituted ABCR. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized ABCR had ATPase and GTPase activity (K(m) approximately 75 micrometer V(max) approximately 200 nmol/min/mg) that was stimulated 1.5-2-fold by all-trans-retinal and dependent on phospholipid and dithiothreitol. The K(m) for ATP decreased to approximately 25 micrometer after reconstitution, whereas the V(max) was strongly dependent on the lipid used for reconstitution. ABCR reconstituted in ROS phospholipid had a V(max) for basal and retinal activated ATPase activity that was 4-6 times higher than for ABCR in soybean or brain phospholipid. This enhanced activity was mainly due to the high phosphatidylethanolamine (PE) content of ROS membranes. PE was also required for retinoid-stimulated ATPase activity. ATPase activity of ABCR was stimulated by the addition of N-retinylidene-PE but not the reduced derivative, retinyl-PE. ABCR expressed in COS-1 cells also exhibited retinal-stimulated ATPase activity similar to that of the native protein. These results support the view that ABCR is an active retinoid transporter, the nucleotidase activity of which is strongly influenced by its lipid environment.  相似文献   

9.
NADH:cytochrome b5 oxidoreductase catalyzes the transfer of reducing equivalents from the physiological electron donor, NADH, to two molecules of cytochrome b5. Utilizing a heterologous expression system for the soluble, catalytic domain of the rat microsomal enzyme, we have produced two mutants, corresponding to E255- and G291D. These mutants correspond to the two specific mutations that were identified over a half century later following diagnosis of the original cases of type I recessive congenital methemoglobinemia (RCM). We have purified both the E255- and G291D variants to homogeneity to determine the molecular basis for type I RCM in these individuals. Both the E255- and G291D variants retained a full complement of FAD and exhibited absorption and CD spectroscopic properties comparable to those of the wild-type protein. Oxidation-reduction potentiometric titrations yielded standard midpoint potentials (E0') for the FAD/FADH2 couple of -271 and -273 mV for the E255- and G291D variants, respectively, which were comparable to the value of -268 mV obtained for the wild-type protein and confirmed that the redox potential of the flavin was unaffected by either mutation. Thermal and proteolytic stability studies revealed that while the G291D variant exhibited stability comparable to that of wild-type, the E255- variant was markedly less stable, indicative of an altered conformation. Initial-rate kinetic studies revealed that both mutants had decreased catalytic activity (kcat), with the E255- and G291D variants retaining approximately 38 and 58% of wild-type activity, respectively. However, the affinity for NADH (KmNADH) was decreased approximately 100-fold for E255- compared to only approximately 1.3-fold for G291D, results supported by the spectroscopic binding constant (Ks) obtained for G291D. These results indicate that the properties of both the E255- and G291D cytochrome b5 oxidoreductase mutants are similar to those of other variants that have been identified as resulting in the type I form of RCM.  相似文献   

10.
ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.  相似文献   

11.
A large body of experimental and clinical data have documented the damaging effects of light exposure on photoreceptor cells although the identities of the biologically relevant molecular targets of photodamage are still uncertain. Several lines of evidence point to retinoids or retinoid derivatives as chromophores that can mediate light damage. We report here that ABCR, a photoreceptor-specific transporter involved in the recycling of all-trans-retinal, is unusually sensitive to photooxidation damage mediated by all-trans-retinal in vitro. Partial loss of ABCR function is responsible for Stargardt macular dystrophy, which is associated with accumulation of A2E, a diretinoid adduct within the retinal pigment epithelium. Photodamage to ABCR causes it to aggregate in SDS gels and results in the loss of retinal-stimulated ATPase activity. Peripherin/RDS and ROM-1, two structural proteins that colocalize with ABCR at the outer segment disc rim, are also significantly more susceptible to all-trans-retinal-mediated photodamage than are the major proteins from the rod outer segment. These observations imply that there may be specific protein targets of photodamage within the outer segment, and they may be especially relevant to assessing the risk of light exposure in those individuals who already have diminished ABCR activity due to mutation in one or both copies of the ABCR gene.  相似文献   

12.
The diagnosis of hereditary fructose intolerance (HFI) presents a difficult challenge that often involves procedures of high risk to the patient. A relatively noninvasive method that involves molecular analysis of common alleles would offer a decided advantage. The molecular defects in the aldolase B gene were studied in 31 HFI subjects (23 pedigrees, 47 apparently independent alleles) from the United States and Canada. We screened for the three most common European alleles by direct hybridization of allele-specific oligodeoxyribonucleotides (ASOs) to portions of the aldolase B gene that were amplified by PCR. Fifty-five percent of mutant North American alleles were A149P (ala149----pro), the most common mutation in the European population. The other two alleles, A174D (ala174----asp) and N334K (asn334----lys), represent 11 and 2% of North American alleles, respectively. Nine patients, representing 32% of independent alleles studied, had an HFI allele that was not of this common missense class. This North American allele distribution is significantly different from that in Europe, where 13% of HFI alleles are not of this type. Preliminary screening of amplified DNA with this set of ASOs indicated that 80% of symptomatic HFI patients can be identified in the American population by this simple genetic test.  相似文献   

13.
ABCR is a member of the ABCA subclass of ATP binding cassette transporters that is responsible for Stargardt macular disease and implicated in retinal transport across photoreceptor disc membranes. It consists of a single polypeptide chain arranged in two tandem halves, each having a multi-spanning membrane domain followed by a nucleotide binding domain. To delineate between several proposed membrane topological models, we have identified the exocytoplasmic (extracellular/lumen) N-linked glycosylation sites on ABCR. Using trypsin digestion, site-directed mutagenesis, concanavalin A binding, and endoglycosidase digestion, we show that ABCR contains eight glycosylation sites. Four sites reside in a 600-amino acid exocytoplasmic domain of the N-terminal half between the first transmembrane segment H1 and the first multi-spanning membrane domain, and four sites are in a 275-amino acid domain of the C half between transmembrane segment H7 and the second multi-spanning membrane domain. This leads to a model in which each half has a transmembrane segment followed by a large exocytoplasmic domain, a multi-spanning membrane domain, and a nucleotide binding domain. Other ABCA transporters, including ABC1 linked to Tangier disease, are proposed to have a similar membrane topology based on sequence similarity to ABCR. Studies also suggest that the N and C halves of ABCR are linked through disulfide bonds.  相似文献   

14.
Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae)   总被引:2,自引:0,他引:2  
Garlic mustard (Alliaria petiolata, Brassicaceae) is an invasive, nonindigenous species currently invading the understory of North American woodlands where it is a serious threat to the native flora. Part of this success might be due to allelopathic interference by garlic mustard. Two congeneric species, the European Geum urbanum and the North American Geum laciniatum, were tested for allelopathic inhibition of germination by garlic mustard. Seeds were germinated either on substrate contaminated by garlic mustard or on substrate with contamination neutralized by activated carbon. Allelopathic effects of native European and invasive North American garlic mustard populations were also compared. Activated carbon increased germination by 14%, indicating that garlic mustard contaminated the substrate through root exudates. Activated carbon in turn counteracted this effect. The two test species differed in their sensitivity to allelopathic interference. North American G. laciniatum had a much stronger increase in germination when activated carbon was added to the substrate, independent of the origin of garlic mustard. In contrast, the European G. urbanum germinated better in substrate precultivated with North American garlic mustard, whereas activated carbon increased its germination only in substrate precultivated with European garlic mustard.  相似文献   

15.
ABCR is an ABC transporter that is found exclusively in vertebrate photoreceptor outer segments. Mutations in the human ABCR gene are responsible for autosomal recessive Stargardt disease, the most common cause of early onset macular degeneration. In this paper we review our recent work with purified and reconstituted ABCR derived from bovine retina and from cultured cells expressing wild type or site-directed mutants of human ABCR. These experiments implicate all-trans-retinal (or Schiff base adducts between all-trans-retinal and phosphatidylethanolamine) as the transport substrate, and they reveal asymmetric roles for the two nucleotide binding domains in the transport reaction. A model for the retinal transport reaction is presented which accounts for these experimental observations.  相似文献   

16.
We previously reported mutations in North American West Nile viruses (WNVs) with a small-plaque (sp), temperature-sensitive (ts), and/or mouse-attenuated (att) phenotype. Using an infectious clone, site-directed mutations and 3' untranslated region (3'UTR) exchanges were introduced into the WNV NY99 genome. Characterization of mutants demonstrated that a combination of mutations involving the NS4B protein (E249G) together with either a mutation in the NS5 protein (A804V) or three mutations in the 3'UTR (A10596G, C10774U, A10799G) produced sp, ts, and/or att variants. These results suggested that the discovery of North American WNV-phenotypic variants is rare because of the apparent requirement of concurrent polygenic mutations.  相似文献   

17.
The current report is a quantitative review of the relationship between lipoprotein lipase gene variants and cardiovascular disease based on published population-based studies. Sixteen studies, representing 17,630 individuals, report allelic distribution for lipoprotein lipase gene variants among patients and control individuals. Patient outcomes included clinical cardiovascular disease events, documented coronary disease based on angiography, or intimal media thickening by B-mode ultrasonography. Mantel-Haenszel stratified analysis was used to compute a summary odds ratio and 95% confidence intervals for the association between rare allele in the lipoprotein lipase gene and disease status. Because of potential differing effects associated with different lipoprotein lipase variants, each lipoprotein lipase mutant allele was considered separately. The lipoprotein lipase D9N/-93G to T allele has a summary odds ratio of 2.03 (95% confidence interval 1.30-3.18), indicating a twofold increase in risk of coronary disease for carriers with this allelic variant. The summary odds ratio for the relationship of the rare lipoprotein lipase G188E variant with cardiovascular disease is 5.25 (95% confidence interval 1.54-24.29). The lipoprotein lipase N291S allele is associated with a marginal increase in cardiovascular disease (summary odds ratio 1.25, 95% confidence interval 0.99-1.60, P = 0.07). However, there is stronger evidence for a positive association in certain populations. The summary odds ratio for lipoprotein lipase S447X allele is 0.81 (95% confidence interval 0.65-1.0), which indicates a cardioprotective effect of this lipoprotein lipase gene variant. Thus, lipoprotein lipase gene variants are associated with differential susceptibility to cardiovascular disease.  相似文献   

18.
人乳头瘤病毒(Human papillomavirus,HPV)16型(HPV-16)是引起宫颈癌的一种主要高危型病毒,其2个致癌基因E6和E7的核酸序列变异可能会影响其对宿主细胞的致癌性,已有研究表明其序列突变呈现地域差异性。因此,研究不同地域HPV-16这2个基因的变化情况是宫颈癌流行病学调研的主要内容,也可为研究E6和E7的致癌性积累数据。研究以NCBI登录号为NC_001526.2的HPV-16型病毒的序列为参照,采用Neighbor-joining方法对云南地区74例HPV-16样本的E6、E7的DNA序列构建进化树,结果显示:只有亚洲和欧洲变异亚型,而没有发现非洲1、非洲2、亚-美洲和北美洲这4种变异亚型。DNA序列分析显示:E6的碱基突变以T178G(D25E,59.46%)和T350G(L83V,8.11%)为主,E7的碱基突变主要以A647G(N29S,59.46%)和T846C(同义突变,60.81%)为主。发现E6的新突变有A95G(同义突变,1.35%)和A135G(K11R,1.35%);E7的新突变有C625T(L22F,1.35%)、C627T(同义突变,12.16%)、G689A(G43E,1.35%)、T748G(S63A,1.35%)。此外还发现有一个共突变现象:T178G(D25E,59.46%)-A647G(N29S,59.46%)-T843C(同义突变,21.62%)-T846C(同义突变,60.81%)。  相似文献   

19.
Biswas-Fiss EE 《Biochemistry》2006,45(11):3813-3823
We report here a novel regulation of the ATPase activity of the human retina specific ATP binding cassette transporter (ABC), ABCR, by nucleotide binding domain interactions. We also present evidence that recombinant nucleotide binding domains of ABCR interact in vitro in the complete absence of transmembrane domains (TMDs). Although similar domain-domain interactions have been described in other ABC transporters, the roles of such interactions on the enzymatic mechanisms of these transporters have not been demonstrated experimentally. A quantitative analysis of the in vitro interactions as a function of the nucleotide-bound state demonstrated that the interaction takes place in the absence of nucleotide as well as in the presence of ATP and that it only attenuates in the ADP-bound state. Analysis of the ATPase activities of these proteins in free and complex states indicated that the NBD1-NBD2 interaction significantly influences the ATPase activity. Further investigation, using site-specific mutants, showed that mutations in NBD2 but not NBD1 led to the alteration of the ATPase activity of the NBD1.NBD2 complex and residue Arg 2038 is critical to this regulation. These data indicate that changes in the oligomeric state of the nucleotide binding domains of ABCR are coupled to ATP hydrolysis and might represent a possible signal for the TMDs of ABCR to export the bound substrate. Furthermore, the data support a mechanistic model in which, upon binding of NBD2, NBD1 binds ATP but does not hydrolyze it or does so with a significantly reduced rate.  相似文献   

20.
The KCNJ11 and ABCC8 genes encode components of the pancreatic ATP-sensitive potassium (KATP) channel. Previously, we reported association of the KCNJ11 E23K and ABCC8 R1273R G/A variants with type 2 diabetes (T2D) in a small Russian population sample (n=244). Here we replicated association between these genetic variants and T2D in a larger cohort (588 diabetic and 597 non-diabetic subjects). Using the ANCOVA analysis, Odds Ratios (ORs) and relationships between the carriage of a genotype and biochemical parameters of the patients were assessed and then adjusted for confounders (age, gender, HbA1c, hypertension, and obesity). The KCNJ11 K23 variant and the ABCC8 R1273R allele A showed association with higher risk of T2D (adjusted OR of 1.41 and 2.03, P<0.0001, respectively). Diabetic patients homozygous for K/K had lower 2h insulin (Padjusted=0.044). The ABCC8 A/A variant was associated with increased 2h serum insulin in diabetic and non-diabetic subjects (Padjusted=0.027 and 0.033, respectively). The carriage of the risk variant K/K of KCNJ11 E23K or A/A of ABCC8 G/A R1273R was associated with reduced response to nonsulfonylurea and sulfonylurea blockers of the pancreatic KATP channel. Adjusted attributable population risk was 3.0% (KCNJ11 E23K) and 4.8% (ABCC8 G/A) suggesting for the modest effects of these genetic variants on diabetes susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号