首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms use a number of small basic proteins for organization and compaction of their DNA. By their interaction with the genome, these proteins do have a profound effect on gene expression, growth behavior, and viability. It has to be distinguished between indirect effects as a consequence of the state of chromosome condensation and relaxation that influence the rate of RNA polymerase action as represented by the histone-like proteins, and direct effects by specific binding of proteins to defined DNA segments predominantly located around promoter sequences. This latter class is represented by the transition-state regulators that are involved in integrating various global stimuli and orchestrating expression of the genes under their regulation for a better adaptation to changes in growth rate. In this article we will focus on two different but abundant DNA binding proteins of the gram-positive model organism Bacillus subtilis, the histone-like HBsu as a member of the unspecific and the transition state regulator AbrB as a member of specific classes of DNA binding proteins.  相似文献   

2.
3.
4.
Four DNA binding histone-like proteins have been purified from the nucleoid of the acidothermophilic archaebacterium Sulfolobus acidocaldarius to homogeneity employing DNA-cellulose chromatography and carboxymethylcellulose chromatography. The molecular weights of these proteins are in the range 8,000-12,500. Immunoblotting results suggest that a few antigenic determinants are common among these proteins which could not be detected by immunodiffusion. Spectroscopic properties of the proteins have been studied. The amino acid compositions of these proteins show both similarities and differences with histones and prokaryotic histone-like proteins. All of the four proteins bind native and denatured DNAs and single stranded RNA with differing affinities. Three of the proteins, denoted by HSNP (helix stabilizing nucleoid protein)-A, HSNP-C, and HSNP-C', show physiologically significant, strong, and synergistic effects in stabilizing duplex DNA against thermal denaturation with Tm increases in the range of 15-30 +/- degrees C.  相似文献   

5.
The histone-like proteins (HU) belong to a family of DNA architectural proteins that stabilize nucleoprotein complexes. We found a putative HU protein (TgGlmHMM_3045) in Toxoplasma gondii genome that was homologous to the bacterial HU protein. This putative sequence was located in the scaffold TGG_995361 of the chromosome 10. The sequence included the prokaryotic bacterial histone-like domain, KFGSLGlRRRGERVARNPRT (ID number PS00045). HU protein sequences were also found in Plasmodium falciparum, Neospora caninum, Theileria parva and Theileria annulata. We found that the homology of the putative HU protein in Apicomplexa was greater with bacterial histone-like proteins than with eukaryotic histone proteins. The phylogenetic tree indicated that the putative HU protein genes were acquired in Apicomplexa by means of a secondary endosymbiotic event from red algae and later they were transferred from the apicoplast organelle to the nuclear genome.  相似文献   

6.
The bacterial chromosomal DNA is folded into a compact structure called as ‘nucleoid’ so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like “PAKK” motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of E. coli and mycobacterial IHF in DNA compaction.  相似文献   

7.
We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.  相似文献   

8.
9.
The chlamydial histone-like proteins, Hc1 and Hc2, function as global regulators of chromatin structure and gene expression. Hc1 and Hc2 expression and activity are developmentally regulated. A small metabolite that disrupts Hc1 interaction with DNA also disrupts Hc2 interactions; however, the small regulatory RNA that inhibits Hc1 translation is specific to Hc1.  相似文献   

10.
11.
DNA of acidothermophilic archaebacterium Sulfolobus acidocaldarius has a base composition of about 40 mol% G + C content. A low intracellular salt concentration has been inferred for this organism. These features and the high optimal temperature of growth (75°C) would have a destabilising effect on the helical structure of the intracellular DNA. Hence, the nucleoid of this organism has been isolated in order to analyse its proteins composition and to identify any protein factors responsible for stabilisation of the organism's DNA at its growth temperature. The acid-soluble fraction of the nucleoid contains four low-molecular-weight basic proteins. The four proteins have been purified to homogeneity and antibodies to these proteins have been raised in rabbits. Immunodiffusion results suggest that the proteins are antigenically distinct. Three proteins (A, C and C′) stabilise different double-stranded DNA during thermal denaturation and increase Tm of DNA by about 25 C°. These proteins are referred to as helix-stabilising nucleoid proteins (HSNP). Protein B (referred to a DNA-binding nucleoid protein, DBNP-B) does not show helix-stabilising effect. None of the four proteins stabilises double-stranded RNA. The four proteins bind to native and denatured DNA to different extents as measured by DNA-cellulose chromatography and [3H]DNA binding by filtration. We suggest, based on the DNA binding, histone-like and helix-stabilising properties, that the intracellular function of these proteins is to prevent strand separation of DNA at the optimal temperature of growth (75°C).  相似文献   

12.
From the cells of an Escherichia coli K-12 strain, a 22,000-dalton protein which has an affinity for the superhelical DNA molecule was purified to apparent homogeneity by monitoring the DNA-binding activity using the filter binding assay. In the sedimentation analysis of the DNA-protein complex, the protein has an affinity for the superhelical or single-stranded DNA molecule but neither for the open-circular nor for the linear DNA molecule. The amino acid composition of the protein resembled those of the other prokaryotic histone-like proteins and also to eukaryotic histones H2A and H2B. The protein precipitated upon heating, which is in contrast to the heat-stable feature of the other histone-like proteins. Furthermore, DNA and RNA syntheses in vitro were not affected by the presence of the protein. In view of these characteristics, this protein may play a role in maintaining the bacterial nucleoid structure.  相似文献   

13.
This minireview reflects the change in views on the role of histone-like proteins which has occurred in the 1980 s. Initially these proteins were regarded as analogous to eukaryotic histones though distinguished from the latter by much lower strength of binding to DNA. This was attributed to the greater dynamics of the structure of bacterial chromatin. The accumulation in recent years of results testifying to the absence of protein HU in central region of the nucleoid and the participation of this protein in almost all processes involving the recognition of specific DNA sequences by regulatory proteins forces the rejection of the concept of "histone-likeness" and favors the concept of a general, non-specific enhancer of the recognition of sequences acting by causing changes in the secondary structure of a given DNA region.  相似文献   

14.
We have investigated the effect of the polyamines spermine, spermidine, and putrescine and the prokaryotic histone-like proteins NS1 and NS2 on the restriction endonuclease EcoRI catalyzed cleavage of plasmid and bacteriophage DNAs. At low concentrations of spermine and spermidine, the rate of DNA cleavage by EcoRI is increased, while high concentrations of spermine as well as of spermidine are inhibitory. These phenomena are also observed with other restriction endonucleases. They are, therefore, probably due to the interaction of the polyamines with the DNA. Putrescine does not have such an effect within the concentration range investigated. Remarkably, low concentrations of spermine and spermidine very efficiently suppress EcoRI activity. An inhibition of the EcoRI-catalyzed cleavage of DNA is also observed with NS1 and NS2, an effect that can be mimicked with other basic proteins that interact with DNA. The results are discussed in terms of the mechanism of restriction in vivo.  相似文献   

15.
Bacterial nucleoid is a dynamic entity that changes its three-dimensional shape and compaction depending on cellular physiology. While these changes are tightly associated with compositional alterations of abundant nucleoid-associated proteins implicated in reshaping the nucleoid, their cooperation in regular long-range DNA organization is poorly understood. In this study, we reconstitute a novel nucleoprotein structure in vitro, which is stabilized by cooperative effects of major bacterial DNA architectural proteins. While, individually, these proteins stabilize alternative DNA architectures consistent with either plectonemic or toroidal coiling of DNA, the combination of histone-like protein, histone-like nucleoid structuring protein, and integration host factor produces a conspicuous semiperiodic structure. By employing a bottom-up in vitro approach, we thus characterize a minimum set of bacterial proteins cooperating in organizing a regular DNA structure. Visualized structures suggest a mechanism for nucleation of topological transitions underlying the reshaping of DNA by bacterial nucleoid-associated proteins.  相似文献   

16.
17.
Chloroplast DNA (cpDNA) is packed into discrete structures called chloroplast nucleoids (cp-nucleoids). The structure of cpDNA is thought to be important for its maintenance and regulation. In bacteria and mitochondria, histone-like proteins (such as HU and Abf2, respectively) are abundant and play important roles in DNA organization. However, a primary structural protein has yet to be found in cp-nucleoids. Here, we identified an abundant DNA binding protein from isolated cp-nucleoids of the primitive red alga Cyanidioschyzon merolae. The purified protein had sequence homology with the bacterial histone-like protein HU, and it complemented HU-lacking Escherichia coli mutants. The protein, called HC (histone-like protein of chloroplast), was encoded by a single gene (CmhupA) in the C. merolae chloroplast genome. Using immunofluorescence and immunoelectron microscopy, we demonstrated that HC was distributed uniformly throughout the entire cp-nucleoid. The protein was expressed constitutively throughout the cell and the chloroplast division cycle, and it was able to condense DNA. These results indicate that HC, a bacteria-derived histone-like protein, primarily organizes cpDNA into the nucleoid.  相似文献   

18.
Eubacteria encode proteins that are required for nucleoid organization and for regulation of DNA-dependent processes. Of these histone-like proteins (Hlps), Escherichia coli HU has been shown to associate with the nucleoid and to regulate processes such as DNA repair and recombination. In contrast, the divergent HU homologs encoded by mycobacteria have been variously identified as involved in the physiology of dormancy, in the response to cold shock, or as laminin-binding proteins associated with the cell envelope. We show here, contrary to previous reports that the HU-related Hlp from Mycobacterium smegmatis associates with the nucleoid in vivo . Using indirect fluorescent antibody microscopy we show that cold shock causes Hlp to accumulate in the cytoplasm of M. smegmatis . No evidence of surface-associated Hlp was found in M. smegmatis cells treated for cell wall permeabilization. Quantitative Western blots indicate that exponentially growing cells contain c . 120 molecules per cell, with upregulation of Hlp after cold shock estimated to be c . 10-fold. That Hlp associates with the nucleoid in vivo suggests functions in DNA metabolism, perhaps in adaptation to environmental stress.  相似文献   

19.
Genetic studies have identified a number of genes whose products appear to be required for the transport of the group A colicins and the single-stranded DNA of certain filamentous bacteriophages into Escherichia coli. Mutations in these genes allow normal binding of the colicins to their outer-membrane receptors and of the bacteriophage of the tip of specific conjugative pili, but do not allow translocation of the macromolecules to their target. These mutations have been designed 'tolerant' (tol) mutations and the protein products specified by these genes appear to comprise part of a transport system known as the Tol import system. Some of these genes have been isolated, sequenced and their protein products localized to the membranes or periplasm of E. coli. Information is also available regarding the domains of the colicins or phage proteins which interact with the Tol proteins. A preliminary model of the location and possible interactions of the Tol proteins is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号