首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathway of carbon dioxide fixation in crassulacean plants   总被引:8,自引:7,他引:1       下载免费PDF全文
Combined gas chromatography-mass spectrometry of malic acid derivatives has been used to show unequivocally that malic acid, synthesized during active acid accumulation in the dark by Kalanchoë daigremontiana Hammet et Perrier in the presence of 13CO2 is produced by a pathway involving a single carboxylation. The significance of the finding that crassulacean malate synthesized in the dark and in the presence of 14CO2 often contains 66% of the total carboxyl label in carbon atom 4, which has previously been taken to indicate the operation of a double carboxylation pathway or has been dismissed as an artefact, is discussed.  相似文献   

2.
In vitro studies of dark 14CO2 fixation with isolated cell aggregates of Kalanchoë fedtschenkoi showed that malate synthesized after 20 sec is predominantly (85 to 92%) labeled at carbon 4, while after 20 min only 65 to 69% of the radioactivity was located in this position. The intramolecular labeling pattern of malate could not be changed by supplementing the cells with carboxylation reaction substrates such as ribulose diphosphate or phosphoenolpyruvate. The kinetic decline of label at carbon 4 of malate occurs independently of CO2 fixation, since 4-14C-labeled aspartate fed to the cells gave rise to malate labeled 62% at carbon 4 after 20 min. Furthermore, the cells were capable of converting fed malate to fumarate. It is concluded that synthesis of malate during dark CO2 fixation is accomplished by a single carboxylation step via phosphoenolpyruvate carboxylase and labeling patterns observed in malate are a consequence of the action of fumarase.  相似文献   

3.
Leaves of Kalanchoë pinnata were exposed in the dark to air (allowing the fixation of CO2 into malic acid) or 2% O2, 0% CO2 (preventing malic acid accumulation). They were then exposed to bright light in the presence or absence of external CO2 and light dependent inhibition of photosynthetic properties assessed by changes in 77 K fluorescence from photosystem II (PSII), light response curves and quantum yields of O2 exchange, rates of electron transport from H2O through QB (secondary electron acceptor from the PSII reaction center) in isolated thylakoids, and numbers of functional PSII centers in intact leaf discs. Sun leaves of K. pinnata experienced greater photoinhibition when exposed to high light in the absence of CO2 if malic acid accumulation had been prevented during the previous dark period. Shade leaves experienced a high degree of photoinhibition when exposed to high light regardless of whether malic acid had been allowed to accumulate in the previous dark period or not. Quantum yields were depressed to a greater degree than was 77 K fluorescence from PSII following photoinhibition.  相似文献   

4.
The metabolism of [13C]malate was studied in the Crassulacean plant Kalanchoë tubiflora following exposure to 13CO2 for 2 hour intervals during a 16 hour dark cycle. Nuclear magnetic resonance spectroscopy of [13C]malate extracted from labeled tissue revealed that the transient flux of malate to the mitochondria, estimated by the randomization of [4-13C]malate to [1- 13C]malate by fumarase, varied substantially during the dark period. At both 15 and 25°C, the extent of malate label randomization in the mitochondria was greatest during the early and late parts of the dark period and was least during the middle of the night, when the rate of 13CO2 uptake was highest. Randomization of labeled malate continued for many hours after malate synthesis had initially occurred. Internally respired 12CO2 also served as a source of carbon for malate formation. At 15°C, 15% of the total malate was formed from respired 12CO2, while at 25°C, 49% of the accumulated malate was derived from respired 12CO2. Some of the malate synthesized from external 13CO2 was also respired during the night. The proportion of the total [13C]malate respired during the dark period was similar at 15 and 25°C, and respiration of newly formed [13C]malate increased as the night period progressed. These data are discussed with regard to the relative fluxes of malate to the mitochondria and the vacuole during dark CO2 fixation.  相似文献   

5.
13C nuclear magnetic resonance spectroscopy of intact leaves of Kalanchoë tubiflora was used to observe Crassulacean acid metabolism in vivo. 13C signals from C-4 of malate were observed after overnight exposure of leaves to 13CO2. Illumination of the labeled leaves resulted in a gradual decrease in the malate signals. After a period of darkness in normal air, 13C signals were detected in all four carbons of malate in the previously labeled leaves. The 13C nuclear magnetic resonance spectrum of malate in solution was pH dependent, which allowed an estimation of the vacuolar pH from the whole leaf spectrum. The pH was 4.0 following a 14-hour dark period, but rose to greater than 6.0 after 6 hours of illumination.  相似文献   

6.
A mathematical model is developed which can be used to predict in vivo carbon isotope fractionations associated with carbon fixation in plants in terms of diffusion, CO2 hydration, and carboxylation components. This model also permits calculation of internal CO2 concentration for comparison with results of gas-exchange experiments. The isotope fractionations associated with carbon fixation in Kalanchoë daigremontiana and Bryophyllum tubiflorum have been measured by isolation of malic acid following dark fixation and enzymic determination of the isotopic composition of carbon-4 of this material. Corrections are made for residual malic acid, fumarase activity, and respiration. Comparison of these data with calculations from the model indicates that the rate of carbon fixation is limited principally by diffusion, rather than by carboxylation. Processes subsequent to the initial carboxylation also contribute to the over-all isotopic composition of the plant.  相似文献   

7.
Phosphoenolpyruvate carboxylase (PEPc) catalyzes the primary fixation of CO2 in Crassulacean acid metabolism plants. Flux through the enzyme is regulated by reversible phosphorylation. PEPc kinase is controlled by changes in the level of its translatable mRNA in response to a circadian rhythm. The physiological significance of changes in the levels of PEPc-kinase-translatable mRNA and the involvement of metabolites in control of the kinase was investigated by subjecting Kalanchoë daigremontiana leaves to anaerobic conditions at night to modulate the magnitude of malate accumulation, or to a rise in temperature at night to increase the efflux of malate from vacuole to cytosol. Changes in CO2 fixation and PEPc kinase activity reflected those in kinase mRNA. The highest rates of CO2 fixation and levels of kinase mRNA were observed in leaves subjected to anaerobic treatment for the first half of the night and then transferred to ambient air. In leaves subjected to anaerobic treatment overnight and transferred to ambient air at the start of the day, PEPc-kinase-translatable mRNA and activity, the phosphorylation state of PEPc, and fixation of atmospheric CO2 were significantly higher than those for control leaves for the first 3 h of the light period. A nighttime temperature increase from 19°C to 27°C led to a rapid reduction in kinase mRNA and activity; however, this was not observed in leaves in which malate accumulation had been prevented by anaerobic treatment. These data are consistent with the hypothesis that a high concentration of malate reduces both kinase mRNA and the accumulation of the kinase itself.  相似文献   

8.
Malate synthesis by CO2 dark fixation and malate accumulation in the vacuoles of leaf slices of Kalanchoë daigremontiana Hamet et Perrier, a plant performing crassulacean acid metabolism, occurs only in external solutions where the osmotic pressure difference between the cells and the medium is low. Conversely, malate loss from the vacuoles depends on a high osmotic pressure difference between the cells and the medium and is observed in media of low osmotic pressure. This suggests that the diurnal oscillations of malate levels in crassulacean acid metabolism leaf cells are regulated by osmotic gradients. These findings support a model which is introduced to explain how the rhythm of crassulacean acid metabolism may function in the intact plant.  相似文献   

9.
Changes in glucose-6-P, fructose-6-P, fructose-1,6-diP, 6-phospho-gluconate, phosphoenolpyruvate, 3-phosphoglycerate, and pyruvate levels in the leaves of the Crassulacean plant Kalanchoë daigremontiana Hammet et Perrier were measured enzymically during transitions from CO2-free air to air, air to CO2-free air, and throughout the course of acid accumulation in darkness. The data are discussed in terms of the involvement of phosphoenolpyruvate carboxylase in malic acid synthesis and in terms of the regulation of the commencement of malic acid synthesis and accumulation through the effects of CO2 on storage carbohydrate mobilization and its termination through the effects of malic acid on phosphoenolpyruvate carboxylase activity.  相似文献   

10.
Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C3 (spinach) and C4 (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin.

Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates.

Kalanchoë FBPase could be partially activated by Mg2+ at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca2+, especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg2+ concentration. However, like FBPase, increased Mg2+ concentrations enhanced the thioredoxin-linked activation of this enzyme.

In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity.

These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C3 and C4 plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the functional segregation of glucan synthesis and degradation.

  相似文献   

11.
Malic acid isolated from Bryophyllum pinnatum (Lamk.) Oken (B. calycinum Salisb.), Bryophyllum tubiflorum Harv., Kalanchoë diagremontiana Hamet et Perrier and Sedum guatamalense Hemsl. after dark 14CO2 fixation was degraded by an in vitro NADP-malic enzyme technique. In the short term (5 to 30 seconds) the malic acid was almost exclusively labeled in the C-4 carboxyl carbon (greater than 90%). The percentage of 14C in the C-4 carboxyl of malic acid declined slowly with time, reaching 70% in B. tubiflorum and 54% in B. pinnatum after 14 hours of exposure to 14CO2. It was found that malic acid-adapted Lactobacillus arabinosus may seriously underestimate the C-4 carboxyl component of label in malic acid-14C. The amount of substrate which the bacteria can completely metabolize was easily exceeded; there was a significant level of randomization of label even when β-decarboxylation proceeded to completion, and in extended incubation periods, more than 25% of label was removed from malic acid-U-14C. The significance of these findings in relation to pathways of carbohydrate metabolism and malic acid synthesis in Crassulacean acid metabolism is discussed.  相似文献   

12.
Winter K 《Plant physiology》1980,66(5):917-921
Net CO2 and water vapor exchange were studied in the Crassulacean acid metabolism plant Kalanchoë pinnáta during a normal 12-hour light/12-hour dark cycle and during a prolonged light period. Leaf temperature and leaf-air vapor pressure difference were kept constant at 20 C and 9 to 10 millibar. There was a 25% increase in the rate of CO2 fixation during the first 6 hours prolonged light without change in stomatal conductance. This was associated with a decrease in the intracellular partial pressure of CO2, a decrease in the stimulation of net CO2 uptake by 2% O2, and a decrease in the CO2 compensation point from 45 to 0 microbar. In the normal light period after deacidification, leaves showed a normal light dependence of CO2 uptake but, in prolonged light, CO2 uptake was scarcely light-dependent. The increase in titratable acidity in prolonged light was similar to that in the dark.  相似文献   

13.
Both transmittance changes in a weak beam of green light (light scattering) and the slow decay of chlorophyll a fluorescence were used as indicators of the energy state of leaves of a Crassulacean acid metabolism plant, Kalanchoë pinnata, at frequent intervals during 12-hour light/12-hour dark cycles. To induce light scattering and fluorescence changes, leaves were exposed to red light for 6 minutes. When measurements were made during the light period, the leaves were kept in darkness for 6 minutes before illumination. In the middle of the light period, when malic acid decarboxylation was very active and stomatal conductance was low, light scattering changes were small and indicated that the energy state of leaves was low. This result was supported by determination of adenylate levels. Light scattering and ATP/ADP ratios increased during the late light period when the tissue was deacidified. Illumination produced maximum light scattering changes between the 2nd and 5th hour of the dark period, when rates of dark CO2 fixation were highest. Light scattering and fluorescence measurements taken from leaves, which were illuminated with red or far-red light in the presence or absence of O2 showed that, in addition to linear electron transport, K. pinnata has the potential for both cyclic and pseudocyclic electron transport. The results are relevant with regard to the high ATP demand during Crassulacean acid metabolism.  相似文献   

14.
CO2 exchange characteristics were studied during the light-stimulated burst of CO2 uptake (MB) immediately following a period of nocturnal CO2 fixation in the Crassulacean acid metabolism plant Kalanchoë daigremontiana. During the early parts of the MB, stimulation of net CO2 uptake by low ambient O2 concentration (1.5%) was small, and leaves showed the capacity for net CO2 uptake at low ambient CO2 partial pressure (30 microbars) and when the MB was interrupted by darkness. During the later phase of the MB, stimulation of net CO2 uptake by 1.5% O2 was increased, and net CO2 loss was recorded both at 30 microbars CO2 and during dark interruptions. These results suggest that CO2 fixation during the MB occurs simultaneously via phosphoenolpyruvate carboxylase (predominant during the early phase of the MB) and via ribulose bisphosphate carboxylase (predominant during the later phase of the burst). The magnitude and duration of the MB was increased by a reduction in the length of the dark period and by low (15°C) compared to high (30°C) leaf temperatures.  相似文献   

15.
The studies described in the paper were conducted with tissue slices of Crassulacean acid metabolism (CAM) plants floating in isotonic buffer. In a first series of experiments, temperature effects on the efflux of [14C]malate and14CO2 were studied. An increase of temperature increased the efflux from the tissue in a non-linear manner. The efflux was markedly influenced also by the temperatures applied during the pretreatment. The rates of label export in response to the temperature and the relative contributions of14CO2 and [14C]malate to the label export were different in the two studied CAM plants (Kalanchoë daigremontiana, Sempervivum montanum). In further experiments, temperature response of the labelling patterns produced by14CO2 fixation and light and darkness were studied. In tissue which had accumulated malate (acidified state) an increase of temperature decreased the rates of dark CO2 fixation whilst the rates of CO2 fixation in light remained largely unaffected. An increase of temperature shifted the labelling patterns from a C4-type (malate being the mainly labelled compound) into a C3-type (label in carbohydrates). No such shift in the labelling patterns could be observed in the tissue which had depleted the previously stored malate (deacidified state). The results indicate that in the acidified tissue the increase of temperature increases the efflux of malate from the vacuole by changing the properties of the tonoplast. It is assumed that the increased export of malic acid lowers the in-vivo activity of phosphoenol pyruvate carboxylase by feedback inhibition.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEPCase phosphoenolpyruvate carboxylase Dedicated to Professor O.L. Lange, Würzburg, on the occasion of his 60th birthday  相似文献   

16.
The labeling patterns in malic acid from dark 13CO2 fixation in seven species of succulent plants with Crassulacean acid metabolism were analysed by gas chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectrometry. Only singly labeled malic-acid molecules were detected and on the average, after 12–14 h dark 13CO2 fixation the ratio of [4-13C] to [1-13C] label was 2:1. However the 4-C carboxyl contained from 72 to 50% of the label depending on species and temperature. The 13C enrichment of malate and fumarate was similar. These data confirm those of W. Cockburn and A. McAuley (1975, Plant Physiol. 55, 87–89) and indicate fumarase randomization is responsible for movement of label to 1-C malic acid following carboxylation of phosphoenolpyruvate. The extent of randomization may depend on time and on the balance of malic-acid fluxes between mitochondria and vacuoles. The ratio of labeling in 4-C to 1-C of malic acid which accumulated following 13CO2 fixation in the dark did not change during deacidification in the light and no doubly-labeled molecules of malic acid were detected. These results indicate that further fumarase randomization does not occur in the light, and futile cycling of decarboxylation products of [13C] malic acid (13CO2 or [1-13C]pyruvate) through phosphoenolpyruvate carboxylase does not occur, presumably because malic acid inhibits this enzyme in the light in vivo. Short-term exposure to 13CO2 in the light after deacidification leads to the synthesis of singly and multiply labeled malic acid in these species, as observed by E.W. Ritz et al. (1986, Planta 167, 284–291). In the shortest times, only singly-labeled [4-13C]malate was detected but this may be a consequence of the higher intensity and better detection statistics of this ion cluster during mass spectrometry. We conclude that both phosphoenolpyruvate carboxylase (EC 4.1.1.32) and ribulose-1,5-biphosphate carboxylase (EC 4.1.1.39) are active at this time.Abbreviations CAM Crassulacean acid metabolism - GCMS gas chromatography-mass spectrometry - MS mass spectrometry - NMR nuclear magnetic resonance spectrometry - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

17.
Intact leaves of Kalanchoë daigremontiana were exposed to CO2 partial pressures of 100, 300, and 1000 microbars. Malic acid was extracted, purified, and degraded in order to obtain isotopic composition of carbon-1 and carbon-4. From these data, it is possible to calculate the carbon isotope composition of newly fixed carbon in malate. In all three treatments, the isotopic composition of newly introduced carbon is the same as that of the CO2 source and is independent of CO2 partial pressures over the range tested. Comparison with numerical models described previously (O'Leary 1981 Phytochemistry 20: 553-567) indicates that we would expect carbon 4 of malate to be 4‰ more negative than source CO2 if diffusion is totally limiting or 7‰ more positive than source CO2 if carboxylation is totally limiting. Our results demonstrate that stomatal aperture adjusts to changing CO2 partial pressures and maintains the ratio of diffusion resistance to carboxylation resistance approximately constant. In this study, carboxylation and diffusion resistances balance so that essentially no fractionation occurs during malate synthesis. Gas exchange studies of the same leaves from which malate was extracted show that the extent of malate synthesis over the whole night is nearly independent of CO2 partial pressure, although there are small variations in CO2 uptake rate. Both the gas exchange and the isotope studies indicate that the ratio of external to internal CO2 partial pressure is the same in all three treatments. Inasmuch as a constant ratio will result in constant isotope fractionation, this observation may explain why plants in general have fairly invariable 13C contents, despite growing under a variety of environmental conditions.  相似文献   

18.
Cell-free preparations of the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana, were analyzed for thioredoxins and ferredoxin-thioredoxin reductase. Three distinct forms of thioredoxin were identified in Kalanchoë leaves, two of which specifically activated fructose 1,6-bisphosphatase (designated f1 and f2) and a third which activated NADP-malate dehydrogenase (thioredoxin m). The apparent molecular weight of both forms of thioredoxin f was 11,000 and that of thioredoxin m was 10,000. In parallel studies, ferredoxin and ferredoxin-thioredoxin reductase were purified from Kalanchoë leaf preparations. Kalanchoë ferredoxin-thioredoxin reductase was similar to that of C3 and C4 plants in molecular weight (31,000) and immunological cross-reactivity. Kalanchoë ferredoxin-thioredoxin reductase exhibited an affinity for ferredoxin as demonstrated by its binding to an immobilized ferredoxin affinity column. The purified components of the Kalanchoë ferredoxin-thioredoxin system could be recombined to function in the photoregulation of chloroplast enzymes. The data suggest that the ferredoxin/thioredoxin system plays a role in enzyme regulation of all higher plants irrespective of whether they show C3, C4, or CAM photosynthesis.  相似文献   

19.
Rustin P  Lance C 《Plant physiology》1986,81(4):1039-1043
The mechanisms and the controlling factors of malate oxidation by mitochondria from leaves of Kalanchoë blossfeldiana Poelln. plants performing Crassulacean acid metabolism were investigated using Percollpurified mitochondria. The effects of pH and of various cofactors (ATP, NAD+, coenzyme A) on malate dehydrogenase (EC 1.1.1.37) and malic enzyme (EC 1.1.1.39) solubilized from these mitochondria were examined. The crucial role of cofactor concentrations in the mitochondrial matrix on the pathways of malate oxidation is shown. The distribution of the electrons originating from malate between the different electron transport pathways and its consequence on the phosphorylation yield was studied. It was found that, depending on the electron transport pathway used, malate oxidation could yield from 3 to 0 ATP. Assayed under conditions of high reducing power and high energy charge, the ability of malic enzyme to feed electrons to the cyanide-resistant nonphosphorylating alternative pathway was found to be higher than that of other dehydrogenases linked to the functioning of the Krebs cycle (pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase). The physiological significance of such a functional relationship between malic enzyme activity and the nonphosphorylating alternative pathway is discussed in relation to Crassulacean acid metabolism.  相似文献   

20.
The variable fluorescence of leaves from Kalanchoë daigremontiana and pineapple, Ananas comosus, both CAM plants, was found to change over a 24-hour cycle and to exhibit high temperature-dependent maxima during the night period. The time course of the induced fluorescence was correlated with malic acid accumulation but not with other aspects of CAM such as with the nature of the decarboxylation pathway or with stomatal movements. The variable fluorescences of sunflower (Helianthus annuus L.) and corn (Zea mays L.) leaves were compared with the CAM plants diurnally; both plants also exhibit high fluorescence maxima during the night period. We conclude that the assembly of the photosystems in the light is a primary process in photosynthesis induction and may be influenced by other cellular metabolic processes, specifically in the case of CAM leaves by malic acid accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号