首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (Nalpha-Fmoc-Ser-[Ac4-beta-D-Gal-(1,3)-Ac2-alpha-D-GalN3+ ++]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, CalphaH chemical shift perturbations, 3JNH:CalphaH couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.  相似文献   

2.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

3.
MUC1 mucin is a large complex glycoprotein expressed on normal epithelial cells in humans and overexpressed and under or aberrantly glycosylated on many malignant cancer cells which consequently allows recognition of the protein core by antibodies. In order to understand how glycosylation may modulate or regulate antibody binding of mucin protein core epitopes, we have analyzed the antibody C595 (epitope RPAP) for its structure, stability, and its binding to a series of synthetic peptides and glycopeptides by a number of spectroscopic methods. Thermal and pH denaturation studies followed by changes in the CD spectrum of the antibody indicate critical involvement of specific residues to the stability of the antibody. Fluorescence binding studies indicate that alpha-N-acetylgalactosamine (GalNAc) glycosylation of a MUC1 mucin synthetic peptide TAPPAHGVT9SAPDTRPAPGS20T21APPA at threonine residues 9 and 21 and serine residue 20 enhanced the binding of antibody. The structural effects of GalNAc glycosylation on the conformation of the MUC1 peptide were studied. CD of the peptides and glycopeptides in a cryogenic mixture cooled to approximately -97 degrees C revealed that a left-handed polyproline II helix (PPII) is adopted by the peptides in solution, which appears to be further stabilized by addition of the GalNAc residues. Consistent with the PPII helical structure, which has no intra-amide hydrogen bonds, high-field NMR spectroscopy of the glycopeptide revealed no sequential dNN, medium-range, or long-range nuclear Overhauser effect (NOE) connectivities. These studies indicate that stabilization of the PPII helix by GalNAc glycosylation present the epitope of C595 antibody with a favorable conformation for binding. Furthermore, they illustrate that glycosylation of the MUC1 tumor marker protein with a simple O-linked saccharide expressed in many cancers, can enhance the binding of the clinically relevant C595 antibody.  相似文献   

4.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

5.
Mucin glycoproteins in neoplasia   总被引:30,自引:0,他引:30  
Mucins are high molecular weight glycoproteins that are heavily glycosylated with many oligosaccharide side chains linked O-glycosidically to the protein backbone. With the recent application of molecular biological methods, the structures of apomucins and regulation of mucin genes are beginning to be understood. At least nine human mucin genes have been identified to date. Although a complete protein sequence is known for only three human mucins (MUC1, MUC2, and MUC7), common motifs have been identified in many mucins. The pattern of tissue and cell-specific expression of these mucin genes are emerging, suggesting a distinct role for each member of this diverse mucin gene family. In epithelial cancers, many of the phenotypic markers for pre-malignant and malignant cells have been found on the carbohydrate and peptide moieties of mucin glycoproteins. The expression of carbohydrate antigens appears to be due to modification of peripheral carbohydrate structures and the exposure of inner core region carbohydrates. The expression of some of the sialylated carbohydrate antigens appears to correlate with poor prognosis and increased metastatic potential in some cancers. The exposure of peptide backbone structures of mucin glycoproteins in malignancies appears to be due to abnormal glycosylation during biosynthesis. Dysregulation of tissue and cell-specific expression of mucin genes also occurs in epithelial cancers. At present, the role of mucin glycoproteins in various stages of epithelial cell carcinogenesis (including the preneoplastic state and metastasis), in cancer diagnosis and immunotherapy is under investigation.  相似文献   

6.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

7.
MUC1 is a membrane glycoprotein, which in adenocarninomas is overexpressed and exhibits truncated O‐glycosylation. Overexpression and altered glycosylation make MUC1 into a candidate for immunotherapy. Monoclonal antibodies directed against MUC1 frequently bind an immunodominant epitope that contains a single site for O‐glycosylation. Glycosylation with tumor carbohydrate antigens such as the Tn‐antigen (GalNAc‐O‐Ser/Thr) results in antibodies binding with higher affinity. One proposed model to explain the enhanced affinity of antibodies for the glycosylated antigen is that the addition of a carbohydrate alters the conformational properties, favoring a binding‐competent state. The conformational effects associated with Tn glycosylation of the MUC1 antigen was investigated using solution‐state NMR and molecular dynamics. NMR experiments revealed distinct substructures of the glycosylated MUC1 peptides compared with the unglycosylated peptide. Molecular dynamics simulations of the MUC1 glycopeptide and peptide revealed distinguishing differences in their conformational preferences. Furthermore, the glycopeptide displayed a smaller conformational sampling compared with the peptide, suggesting that the glycopeptide sampled a narrower conformational space and is less dynamic. A comparison of the computed ensemble of conformations assuming random distribution, NMR models, and molecular dynamics simulations indicated that the MUC1 glycopeptide and aglycosylated peptide sampled structurally distinctly ensembles and that these ensembles were different from that of the random coil. Together, these data support the hypothesis that that conformational pre‐selection could be an essential feature of these peptides that dictates the binding affinities to MUC1 specific antibodies.  相似文献   

8.
Mucin glycoproteins on breast cancer cells carry shortened carbohydrate chains. These partially deglycosylated mucin 1 (MUC-1) structures are recognized by the monoclonal antibody SM3, which is being tested for its diagnostic utility. We used NMR spectroscopy to analyze the binding mode and the binding epitope of peptide and glycopeptide antigens to the SM3 antibody. The pentapeptide PDTRP and the glycopentapeptide PDT(O-alpha-D-GalNAc)RP are known ligands of the monoclonal antibody. The 3D structures of the ligands in the bound conformation were determined by analyzing trNOESY build-up rates. The peptide was found to adopt an extended conformation that fits into the binding pocket of the antibody. The binding epitopes of the ligands were determined by saturation transfer difference (STD) NMR spectroscopy. The peptide's epitope is predominantly located in the N-terminal PDT segment whereas the C-terminal RP segment has fewer interactions with the protein. In contrast, the glycopeptide is interacting with SM3 utilizing all its amino acids. Pro1 shows the strongest binding effect that slightly decays towards Pro5. The GalNAc residue interacts mainly via the N-acetyl residue while the other protons show less interactions similar to that of Pro5. The glycopeptide in the bound state also has an extended conformation of the peptide with the carbohydrate oriented towards the N-terminus. Docking studies showed that peptide and glycopeptide fit the binding pocket of the mAb SM3 very well.  相似文献   

9.
Previously we have shown that the major antigenic determinant of human intestinal mucin is associated with its glycopeptide monomers and not the 118 kDa 'link' component. In the present study, the size and nature of the functional unit containing the antigenic determinant has been assessed by radiation inactivation and immunological assays. Increasing doses of radiation led to a monoexponential decay in antigenic reactivity due to a progressive loss of antigenic determinants. From three independent mucin preparations, a value of 78500 +/- 7000 was determined for the Mr of the functional antigenic unit. Prolonged pronase digestion of native mucin released large degraded glycopeptide monomers containing all the mucin carbohydrate, and low molecular weight peptides. The antigenicity of the glycopeptides decreased with digestion but could not be recovered in the peptide fractions, suggesting that determinants were released and destroyed by the enzyme. Treatment of native mucin with trifluoromethanesulphonic acid caused a major loss of carbohydrate (approx. 70%), but the protein component was unchanged in amino acid profile and remained antigenic. Subsequent thiol reduction, however, abolished the antigenicity of the deglycosylated mucin. We conclude that antigenicity is associated with a non-glycosylated segment of the peptide backbone of the glycopeptides and that a large functional unit of Mr 78500 which is stabilized by disulphide bonds is important for full antigenic activity.  相似文献   

10.
Two proposed glycosylation sites are located within T cell epitopes of rabies virus glycoprotein, namely VVEDEGCTNLSGF (VF13; amino acids 29-41) and GKAYTIFNKTLM (GM12; amino acids 312-323). To explore the effects on peptide conformation due to post-translational modifications, we synthesized glycosylated and phosphorylated versions of the two peptides and compared their structures with the native peptide using CD and FT-IR spectroscopy. After the modifications, i.e., glycosylation on Asn with one or two N-acetyl-glucosamine or glucose residues or phosphorylation on Ser, the low to medium degree of helicity of the unmodified peptides disappears as indicated by CD measurements in water-trifluoroethanol mixtures. Incorporation of one sugar moiety into either peptide resulted with a high probability in a type I (III) beta-turn formation with almost identical spectra for the different peptides. Elongation of the carbohydrate in GM12 only slightly enhanced this effect. In contrast, phosphorylation of VF13 caused distorted conformation of the peptide backbone. This novel and direct demonstration of a change in secondary structure by glycosylation (or phosphorylation) might be an important element in determining peptide antigen structure and function.  相似文献   

11.
Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.  相似文献   

12.
Histidine-rich peptides (histatins, Hsn) in saliva are thought to provide a non-immune defense against Candida albicans. Sequence homology search of the human salivary mucin, MUC7, against histatins revealed a domain at the N-terminus (R3-Q17) having 53% identity to Hsn-5. To determine its candidacidal activity, this 15 residue basic histidine-rich domain of MUC7 (I) was prepared by solid-phase Fmoc chemistry. Various N- and C-terminal protected derivatives of I were also synthesized to correlate the effect of peptide overall charge in exhibiting cidal potency. Candidacidal activity measurement of I and its variants showed considerable ED50 values (effective dosage required to kill 50% of candida cells), albeit greater than Hsn-5 (ED50 approximately 4-6 microM). Of the various analogs tested, N-terminal free acid (I, ED50 approximately 40 microM) and amide (V, ED50 approximately 16 microM) exhibited appreciable candidacidal activities suggesting the possible role of peptide net charge in cidal action. Blocking of N-terminus with a bulky octanoyl group showed only marginal effect on the cidal activity of I or V, indicating that hydrophobicity of these synthetic constructs may not be important for exerting such activities. Membrane-induced conformational transition from random coil to helical structures of all the test peptides implied their tendency to adapt order structures at the lipid-membrane interface similar to that of Hsn-5. However, comparison of propensity for helical structure formation vs. ED50 indicated that cidal potency of MUC7 Hsn-like peptides depends largely on electrostatic interactions irrespective of secondary structural elements. Delineation of solution structure of the most active peptide (V) by 2D-NMR revealed essentially a non-structured conformation in aqueous medium, which further supported the fact that the peptide helical structure may not be a prerequisite for posing candidacidal activity. The formation of smaller truncated peptides and/or Hsn-like fragments on proteolytic degradation of intact MUC7 in the presence of oral flora provided indirect evidence that mucin could serve as a backup candidacidal agent to salivary Hsn.  相似文献   

13.
Peptide T (H-Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr-OH), a fragment of HIV gp120, has been reported to inhibit binding of the virus to the CD4 receptor. The peptide assumes a beta-turn secondary structure, and stabilization of the conformation may increase the biological activity. We synthesized the octapeptide and its C-terminal pentapeptide fragment, unmodified and glycosylated, when monosaccharides were walked through the molecules. Incorporation of the sugar into the longer peptide resulted in the stabilization of the type I (III) beta-turn, as indicated by circular dichroism measurements. While N-terminal glycosylation of the shorter peptide also stabilized the type I (III) beta-turn, the circular dichroism spectra revealed slightly different type II beta-turn structures when the carbohydrate moiety was incorporated into mid-chain or C-terminal positions. Modification of biologically active reverse-turn structures by glycosylation offers a viable alternative to the peptide mimetics approach in drug design.  相似文献   

14.
R Shogren  T A Gerken  N Jentoft 《Biochemistry》1989,28(13):5525-5536
The effect of carbohydrate on the conformation and chain dimensions of mucous glycoproteins was investigated by using light-scattering and circular dichroism studies of native, asialo, and deglycosylated (apo) ovine submaxillary gland mucin (OSM). OSM is a large glycoprotein that is extensively O-glycosylated by the disaccharide alpha-NeuNAc(2-6)alpha-GalNAc-O-Ser/Thr. Measurements of root mean square radius of gyration, (Rg2)1/2, and hydrodynamic radius, Rh, for OSM and its derivatives were carried out as a function of molecular weight by using static and dynamic light-scattering techniques. The results were fit to the wormlike chain model for describing the dimensions of extended polymer chains. By use of this model, values of h, the length per amino acid residue, and q, the persistence length, which is a measure of chain stiffness, were obtained. These values were then used to assess the conformation and degree of chain extension of intact OSM and its partially and totally deglycosylated derivatives. Native and asialo mucin are found to be highly extended random coils, with asialo mucin having a somewhat less extended structure than intact mucin. Upon the complete removal of the carbohydrate side chains, the extended structure characteristic of intact and asialo mucin collapses to chain dimensions typical of denatured globular proteins. Conformational analyses based on the rotational isomeric state model were also performed by using the probability maps of N-acetyl-O-(GalNAc)-Thr-N-methylamide as starting conformations for native and asialo mucin. The results suggest that both the glycosylated and nonglycosylated residues in native mucin may occupy a small region of conformational space having -90 degrees less than phi less than -60 degrees and 60 degrees less than psi less than 180 degrees, while a slightly broader range is found to fit asialo mucin. The proposed conformations obtained for these mucins are consistent with their circular dichroism spectra. Significantly larger ranges of phi and psi values were obtained for apo mucin, as would be expected from its circular dichroism spectra and increased flexibility. These results indicate the expanded mucin structure is the direct result of peptide core glycosylation. These observations together with the results of earlier studies indicate that steric interactions of the O-linked GalNAc residue with the peptide core are primarily responsible for the expanded mucin structure and that these perturbations extend to the nonglycosylated amino acid residues. This expanded mucin conformation must be a significant determinant of the viscoelastic properties of these molecules in solution.  相似文献   

15.
16.
The electrospray ionization (ESI)-tandem quadrupole/orthogonal-acceleration time-of-flight (Q-TOF) mass spectrometer combined with the nano-HPLC system was utilized to determine the glycosylation site and the glycan structure in glycoprotein TIME-EA4 (EA4) from Bombyx diapause eggs. LC-MS analysis of EA4 and deglycosylated EA4 indicated that the carbohydrate moiety of EA4 has the mass of 730.58 Da. Then, EA4 was digested with trypsin and chymotrypsin to identify the glycosylated peptide. The peptide fragment from G1y21 to Phe25 was found to carry the carbohydrate moiety. LC-MS/MS analysis of this peptide fragment revealed the sequence of the attached oligosaccharide and the glycosylation site at the same time. The present methodology utilizing the combination of the nano-HPLC system and a highly sensitive Q-TOF mass spectrometer is demonstrated to be quite effective for analyses of glycoproteins of relatively low purity and limited availability from natural sources.  相似文献   

17.
A neutral peroxidase isozyme (TP) purified from turnip (Brassica napus L. var. purple top white globe) was partially deglycosylated, using chemical and enzymatic treatment. A 32% carbohydrate removal was achieved by exposing TP to a mixture of PNGase F, O-glycosidase, NANase, GALase III and HEXase I, while m-periodate treatment removed about 88% of TP carbohydrate moiety. The glycoprotein fraction of the TP contained a relatively high mannose and fucose content (37 and 31%, w/w, respectively), 16% (w/w) galactose, and 15% (w/w) GlcNAc. Thus, the carbohydrate moiety was classified as a hybrid type. Partially deglycosylated TP had reduced activity (by 50-85%), was more susceptible to proteolysis, and showed a slight decrease in thermostability compared to the native enzyme. Circular dichroism studies strongly suggested that although the carbohydrate moiety of TP did not influence the conformation of the polypeptide backbone, its presence considerably enhanced protein conformational stability toward heat. Removal of oligosaccharide chains from TP caused a decrease in K(m) and V(max) for hydrogen peroxide. Native and chemically deglycosylated TP were similarly immunodetected by rabbit polyclonal antibodies raised against TP. The results suggest that the carbohydrate moiety of TP is important for peroxidase activity and stability.  相似文献   

18.
Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the alpha-Neu-NAc(2-6)alpha-GalNAc- disaccharide. The beta-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the GalNAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13C relaxation behavior (T1 and NOE) the dynamics of the alpha-carbons appear to be unique to each amino acid type and glycosylation state, with alpha-carbon mobilities decreasing in the order Gly greater than Ala = Ser greater than Thr much greater than monoglycosylated Ser/Thr approximately greater than disaccharide linked Ser/Thr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The cause of the mucus clearance problems associated with cystic fibrosis remains poorly understood though it has been suggested that mucin hypersecretion, dehydration of mucins, and biochemical abnormalities in the glycosylation of mucins may be responsible. Since the biochemical and biophysical properties of a mucin are dependent on O-glycosylation, our aim was to evaluate the O-glycosylation of a single mucin gene product in matched pairs of cells that differed with respect to CFTR expression. An epitope-tagged MUC1 mucin cDNA (MUC1F) was used to detect variation in mucin glycosylation in stably transfected colon carcinoma cell lines HT29 and Caco2. The glycosylation of MUC1F mucin was evaluated in matched pairs of Caco2 cell lines that either express wild-type CFTR or have spontaneously lost CFTR expression. The general glycosylation pattern of MUC1F was evaluated by determining its reactivity with a series of monoclonal antibodies against known blood group and tumor-associated carbohydrate antigens. Metabolic labeling experiments were used to estimate the gross levels of glycosylation and sulfation of MUC1F mucin in these matched pairs of cell lines. Expression of CFTR in this experimental system did not affect the gross levels of glycosylation or sulfation of the MUC1F mucin nor the types of carbohydrates structures attached to the MUC1F protein.  相似文献   

20.
Human salivary mucin (MUC7) is characterized by a single polypeptide chain of 357 aa. Detailed analysis of the derived MUC7 peptide sequence reveals five distinct regions or domains: (1) an N-terminal basic, histatin-like domain which has a leucine-zipper segment, (2) a moderately glycosylated domain, (3) six heavily glycosylated tandem repeats each consisting of 23 aa, (4) another heavily glycosylated MUC1- and MUC2-like domain, and (5) a C-terminal leucine-zipper segment. Chemical analysis and semi-empirical prediction algorithms for O-glycosylation suggested that 86/105 (83%) Ser/Thr residues were O-glycosylated with the majority located in the tandem repeats. The high (~25%) proline content of MUC7 including 19 diproline segments suggested the presence of polyproline type structures. CD studies of natural and synthetic diproline-rich peptides and glycopeptides indicated that polyproline type structures do play a significant role in the conformational dynamics of MUC7. In addition, crystal structure analysis of a synthetic diproline segment (Boc-Ala-Pro-OBzl) revealed a polyproline type II extended structure. Collectively, the data indicate that the polyproline type II structure, dispersed throughout the tandem repeats, may impart a stiffening of the backbone and could act in consort with the glycosylated segments to keep MUC7 in a semi-rigid, rod shaped conformation resembling a ‘bottle-brush’ model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号